Merge pull request #2322 from erwincoumans/master
PyBullet.calculateInverseKinematics2 for IK with multiple end-effector locations
This commit is contained in:
@@ -46,7 +46,7 @@ bool IKTrajectoryHelper::computeIK(const double endEffectorTargetPosition[3],
|
||||
{
|
||||
bool useAngularPart = (ikMethod == IK2_VEL_DLS_WITH_ORIENTATION || ikMethod == IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE || ikMethod == IK2_VEL_SDLS_WITH_ORIENTATION) ? true : false;
|
||||
|
||||
Jacobian ikJacobian(useAngularPart, numQ);
|
||||
Jacobian ikJacobian(useAngularPart, numQ, 1);
|
||||
|
||||
ikJacobian.Reset();
|
||||
|
||||
@@ -185,6 +185,115 @@ bool IKTrajectoryHelper::computeIK(const double endEffectorTargetPosition[3],
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool IKTrajectoryHelper::computeIK2(
|
||||
const double* endEffectorTargetPositions,
|
||||
const double* endEffectorCurrentPositions,
|
||||
int numEndEffectors,
|
||||
const double* q_current, int numQ,
|
||||
double* q_new, int ikMethod, const double* linear_jacobians, const double dampIk[6])
|
||||
{
|
||||
bool useAngularPart = false;//for now (ikMethod == IK2_VEL_DLS_WITH_ORIENTATION || ikMethod == IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE || ikMethod == IK2_VEL_SDLS_WITH_ORIENTATION) ? true : false;
|
||||
|
||||
Jacobian ikJacobian(useAngularPart, numQ, numEndEffectors);
|
||||
|
||||
ikJacobian.Reset();
|
||||
|
||||
bool UseJacobianTargets1 = false;
|
||||
|
||||
if (UseJacobianTargets1)
|
||||
{
|
||||
ikJacobian.SetJtargetActive();
|
||||
}
|
||||
else
|
||||
{
|
||||
ikJacobian.SetJendActive();
|
||||
}
|
||||
|
||||
VectorRn deltaC(numEndEffectors *3);
|
||||
MatrixRmn completeJacobian(numEndEffectors*3, numQ);
|
||||
|
||||
for (int ne = 0; ne < numEndEffectors; ne++)
|
||||
{
|
||||
VectorR3 targets;
|
||||
targets.Set(endEffectorTargetPositions[ne*3+0], endEffectorTargetPositions[ne * 3 + 1], endEffectorTargetPositions[ne * 3 + 2]);
|
||||
|
||||
// Set one end effector world position from Bullet
|
||||
VectorRn deltaS(3);
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
deltaS.Set(i, dampIk[i] * (endEffectorTargetPositions[ne*3+i] - endEffectorCurrentPositions[ne*3+i]));
|
||||
}
|
||||
{
|
||||
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
deltaC.Set(ne*3+i, deltaS[i]);
|
||||
for (int j = 0; j < numQ; ++j)
|
||||
{
|
||||
completeJacobian.Set(ne * 3 + i, j, linear_jacobians[(ne*3+i * numQ) + j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ikJacobian.SetDeltaS(deltaC);
|
||||
ikJacobian.SetJendTrans(completeJacobian);
|
||||
|
||||
// Calculate the change in theta values
|
||||
switch (ikMethod)
|
||||
{
|
||||
case IK2_JACOB_TRANS:
|
||||
ikJacobian.CalcDeltaThetasTranspose(); // Jacobian transpose method
|
||||
break;
|
||||
case IK2_DLS:
|
||||
case IK2_VEL_DLS_WITH_ORIENTATION:
|
||||
case IK2_VEL_DLS:
|
||||
//ikJacobian.CalcDeltaThetasDLS(); // Damped least squares method
|
||||
assert(m_data->m_dampingCoeff.GetLength() == numQ);
|
||||
ikJacobian.CalcDeltaThetasDLS2(m_data->m_dampingCoeff);
|
||||
break;
|
||||
case IK2_VEL_DLS_WITH_NULLSPACE:
|
||||
case IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE:
|
||||
assert(m_data->m_nullSpaceVelocity.GetLength() == numQ);
|
||||
ikJacobian.CalcDeltaThetasDLSwithNullspace(m_data->m_nullSpaceVelocity);
|
||||
break;
|
||||
case IK2_DLS_SVD:
|
||||
ikJacobian.CalcDeltaThetasDLSwithSVD();
|
||||
break;
|
||||
case IK2_PURE_PSEUDO:
|
||||
ikJacobian.CalcDeltaThetasPseudoinverse(); // Pure pseudoinverse method
|
||||
break;
|
||||
case IK2_SDLS:
|
||||
case IK2_VEL_SDLS:
|
||||
case IK2_VEL_SDLS_WITH_ORIENTATION:
|
||||
ikJacobian.CalcDeltaThetasSDLS(); // Selectively damped least squares method
|
||||
break;
|
||||
default:
|
||||
ikJacobian.ZeroDeltaThetas();
|
||||
break;
|
||||
}
|
||||
|
||||
// Use for velocity IK, update theta dot
|
||||
//ikJacobian.UpdateThetaDot();
|
||||
|
||||
// Use for position IK, incrementally update theta
|
||||
//ikJacobian.UpdateThetas();
|
||||
|
||||
// Apply the change in the theta values
|
||||
//ikJacobian.UpdatedSClampValue(&targets);
|
||||
|
||||
for (int i = 0; i < numQ; i++)
|
||||
{
|
||||
// Use for velocity IK
|
||||
q_new[i] = ikJacobian.dTheta[i] + q_current[i];
|
||||
|
||||
// Use for position IK
|
||||
//q_new[i] = m_data->m_ikNodes[i]->GetTheta();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool IKTrajectoryHelper::computeNullspaceVel(int numQ, const double* q_current, const double* lower_limit, const double* upper_limit, const double* joint_range, const double* rest_pose)
|
||||
{
|
||||
m_data->m_nullSpaceVelocity.SetLength(numQ);
|
||||
|
||||
@@ -31,6 +31,13 @@ public:
|
||||
const double* q_old, int numQ, int endEffectorIndex,
|
||||
double* q_new, int ikMethod, const double* linear_jacobian, const double* angular_jacobian, int jacobian_size, const double dampIk[6]);
|
||||
|
||||
bool computeIK2(
|
||||
const double* endEffectorTargetPositions,
|
||||
const double* endEffectorCurrentPositions,
|
||||
int numEndEffectors,
|
||||
const double* q_current, int numQ,
|
||||
double* q_new, int ikMethod, const double* linear_jacobians, const double dampIk[6]);
|
||||
|
||||
bool computeNullspaceVel(int numQ, const double* q_current, const double* lower_limit, const double* upper_limit, const double* joint_range, const double* rest_pose);
|
||||
bool setDampingCoeff(int numQ, const double* coeff);
|
||||
};
|
||||
|
||||
@@ -4905,28 +4905,51 @@ B3_SHARED_API void b3CalculateInverseKinematicsAddTargetPurePosition(b3SharedMem
|
||||
b3Assert(command);
|
||||
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
|
||||
command->m_updateFlags |= IK_HAS_TARGET_POSITION;
|
||||
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
|
||||
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
|
||||
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0] = endEffectorLinkIndex;
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[0] = targetPosition[0];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[1] = targetPosition[1];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[2] = targetPosition[2];
|
||||
command->m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices = 1;
|
||||
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = 0;
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = 0;
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[2] = 0;
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[3] = 1;
|
||||
}
|
||||
|
||||
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetsPurePosition(b3SharedMemoryCommandHandle commandHandle, int numEndEffectorLinkIndices, const int* endEffectorIndices, const double* targetPositions)
|
||||
{
|
||||
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
|
||||
b3Assert(command);
|
||||
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
|
||||
command->m_updateFlags |= IK_HAS_TARGET_POSITION;
|
||||
command->m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices = numEndEffectorLinkIndices;
|
||||
|
||||
for (int i = 0; i < numEndEffectorLinkIndices; i++)
|
||||
{
|
||||
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[i] = endEffectorIndices[i];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[i * 3 + 0] = targetPositions[i * 3 + 0];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[i * 3 + 1] = targetPositions[i * 3 + 1];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[i * 3 + 2] = targetPositions[i * 3 + 2];
|
||||
}
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = 0;
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = 0;
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[2] = 0;
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[3] = 1;
|
||||
}
|
||||
|
||||
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetPositionWithOrientation(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[3], const double targetOrientation[4])
|
||||
{
|
||||
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
|
||||
b3Assert(command);
|
||||
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
|
||||
command->m_updateFlags |= IK_HAS_TARGET_POSITION + IK_HAS_TARGET_ORIENTATION;
|
||||
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
|
||||
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0] = endEffectorLinkIndex;
|
||||
command->m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices = 1;
|
||||
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[0] = targetPosition[0];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[1] = targetPosition[1];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[2] = targetPosition[2];
|
||||
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = targetOrientation[0];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = targetOrientation[1];
|
||||
@@ -4940,11 +4963,12 @@ B3_SHARED_API void b3CalculateInverseKinematicsPosWithNullSpaceVel(b3SharedMemor
|
||||
b3Assert(command);
|
||||
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
|
||||
command->m_updateFlags |= IK_HAS_TARGET_POSITION + IK_HAS_NULL_SPACE_VELOCITY;
|
||||
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
|
||||
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0] = endEffectorLinkIndex;
|
||||
command->m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices = 1;
|
||||
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[0] = targetPosition[0];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[1] = targetPosition[1];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[2] = targetPosition[2];
|
||||
|
||||
for (int i = 0; i < numDof; ++i)
|
||||
{
|
||||
@@ -4961,11 +4985,12 @@ B3_SHARED_API void b3CalculateInverseKinematicsPosOrnWithNullSpaceVel(b3SharedMe
|
||||
b3Assert(command);
|
||||
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
|
||||
command->m_updateFlags |= IK_HAS_TARGET_POSITION + IK_HAS_TARGET_ORIENTATION + IK_HAS_NULL_SPACE_VELOCITY;
|
||||
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
|
||||
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0] = endEffectorLinkIndex;
|
||||
command->m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices = 1;
|
||||
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[0] = targetPosition[0];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[1] = targetPosition[1];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetPositions[2] = targetPosition[2];
|
||||
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = targetOrientation[0];
|
||||
command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = targetOrientation[1];
|
||||
|
||||
@@ -424,6 +424,7 @@ extern "C"
|
||||
///compute the joint positions to move the end effector to a desired target using inverse kinematics
|
||||
B3_SHARED_API b3SharedMemoryCommandHandle b3CalculateInverseKinematicsCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId);
|
||||
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetPurePosition(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[/*3*/]);
|
||||
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetsPurePosition(b3SharedMemoryCommandHandle commandHandle, int numEndEffectorLinkIndices, const int* endEffectorIndices, const double* targetPositions);
|
||||
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetPositionWithOrientation(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[/*3*/], const double targetOrientation[/*4*/]);
|
||||
B3_SHARED_API void b3CalculateInverseKinematicsPosWithNullSpaceVel(b3SharedMemoryCommandHandle commandHandle, int numDof, int endEffectorLinkIndex, const double targetPosition[/*3*/], const double* lowerLimit, const double* upperLimit, const double* jointRange, const double* restPose);
|
||||
B3_SHARED_API void b3CalculateInverseKinematicsPosOrnWithNullSpaceVel(b3SharedMemoryCommandHandle commandHandle, int numDof, int endEffectorLinkIndex, const double targetPosition[/*3*/], const double targetOrientation[/*4*/], const double* lowerLimit, const double* upperLimit, const double* jointRange, const double* restPose);
|
||||
|
||||
@@ -10227,34 +10227,10 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
|
||||
ikHelperPtr = tmpHelper;
|
||||
}
|
||||
|
||||
int endEffectorLinkIndex = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex;
|
||||
|
||||
btAlignedObjectArray<double> startingPositions;
|
||||
startingPositions.reserve(bodyHandle->m_multiBody->getNumLinks());
|
||||
|
||||
btVector3 targetPosWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetPosition[0],
|
||||
clientCmd.m_calculateInverseKinematicsArguments.m_targetPosition[1],
|
||||
clientCmd.m_calculateInverseKinematicsArguments.m_targetPosition[2]);
|
||||
|
||||
btQuaternion targetOrnWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[0],
|
||||
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[1],
|
||||
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[2],
|
||||
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[3]);
|
||||
|
||||
btTransform targetBaseCoord;
|
||||
if (clientCmd.m_updateFlags & IK_HAS_CURRENT_JOINT_POSITIONS)
|
||||
{
|
||||
targetBaseCoord.setOrigin(targetPosWorld);
|
||||
targetBaseCoord.setRotation(targetOrnWorld);
|
||||
}
|
||||
else
|
||||
{
|
||||
btTransform targetWorld;
|
||||
targetWorld.setOrigin(targetPosWorld);
|
||||
targetWorld.setRotation(targetOrnWorld);
|
||||
btTransform tr = bodyHandle->m_multiBody->getBaseWorldTransform();
|
||||
targetBaseCoord = tr.inverse() * targetWorld;
|
||||
}
|
||||
|
||||
{
|
||||
int DofIndex = 0;
|
||||
@@ -10290,6 +10266,9 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
|
||||
}
|
||||
|
||||
btScalar currentDiff = 1e30f;
|
||||
b3AlignedObjectArray<double> endEffectorTargetWorldPositions;
|
||||
b3AlignedObjectArray<double> endEffectorTargetWorldOrientations;
|
||||
b3AlignedObjectArray<double> endEffectorCurrentWorldPositions;
|
||||
b3AlignedObjectArray<double> jacobian_linear;
|
||||
b3AlignedObjectArray<double> jacobian_angular;
|
||||
btAlignedObjectArray<double> q_current;
|
||||
@@ -10302,13 +10281,64 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
|
||||
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
|
||||
btInverseDynamics::vecx nu(numDofs + baseDofs), qdot(numDofs + baseDofs), q(numDofs + baseDofs), joint_force(numDofs + baseDofs);
|
||||
|
||||
endEffectorTargetWorldPositions.resize(0);
|
||||
endEffectorTargetWorldPositions.reserve(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 3);
|
||||
endEffectorTargetWorldOrientations.resize(0);
|
||||
endEffectorTargetWorldOrientations.resize(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 4);
|
||||
|
||||
bool validEndEffectorLinkIndices = true;
|
||||
|
||||
for (int ne = 0; ne < clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices; ne++)
|
||||
{
|
||||
|
||||
int endEffectorLinkIndex = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[ne];
|
||||
validEndEffectorLinkIndices = validEndEffectorLinkIndices && (endEffectorLinkIndex < bodyHandle->m_multiBody->getNumLinks());
|
||||
|
||||
btVector3 targetPosWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[ne*3+0],
|
||||
clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[ne * 3 + 1],
|
||||
clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[ne * 3 + 2]);
|
||||
|
||||
btQuaternion targetOrnWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 0],
|
||||
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 1],
|
||||
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 2],
|
||||
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 3]);
|
||||
|
||||
btTransform targetBaseCoord;
|
||||
if (clientCmd.m_updateFlags & IK_HAS_CURRENT_JOINT_POSITIONS)
|
||||
{
|
||||
targetBaseCoord.setOrigin(targetPosWorld);
|
||||
targetBaseCoord.setRotation(targetOrnWorld);
|
||||
}
|
||||
else
|
||||
{
|
||||
btTransform targetWorld;
|
||||
targetWorld.setOrigin(targetPosWorld);
|
||||
targetWorld.setRotation(targetOrnWorld);
|
||||
btTransform tr = bodyHandle->m_multiBody->getBaseWorldTransform();
|
||||
targetBaseCoord = tr.inverse() * targetWorld;
|
||||
}
|
||||
|
||||
btVector3DoubleData targetPosBaseCoord;
|
||||
btQuaternionDoubleData targetOrnBaseCoord;
|
||||
targetBaseCoord.getOrigin().serializeDouble(targetPosBaseCoord);
|
||||
targetBaseCoord.getRotation().serializeDouble(targetOrnBaseCoord);
|
||||
|
||||
endEffectorTargetWorldPositions.push_back(targetPosBaseCoord.m_floats[0]);
|
||||
endEffectorTargetWorldPositions.push_back(targetPosBaseCoord.m_floats[1]);
|
||||
endEffectorTargetWorldPositions.push_back(targetPosBaseCoord.m_floats[2]);
|
||||
|
||||
endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[0]);
|
||||
endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[1]);
|
||||
endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[2]);
|
||||
endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[3]);
|
||||
}
|
||||
for (int i = 0; i < numIterations && currentDiff > residualThreshold; i++)
|
||||
{
|
||||
BT_PROFILE("InverseKinematics1Step");
|
||||
if (ikHelperPtr && (endEffectorLinkIndex < bodyHandle->m_multiBody->getNumLinks()))
|
||||
if (ikHelperPtr && validEndEffectorLinkIndices)
|
||||
{
|
||||
jacobian_linear.resize(3 * numDofs);
|
||||
jacobian_angular.resize(3 * numDofs);
|
||||
jacobian_linear.resize(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices*3 * numDofs);
|
||||
jacobian_angular.resize(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices*3 * numDofs);
|
||||
int jacSize = 0;
|
||||
|
||||
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
|
||||
@@ -10329,7 +10359,6 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
|
||||
if (bodyHandle->m_multiBody->getLink(i).m_jointType >= 0 && bodyHandle->m_multiBody->getLink(i).m_jointType <= 2)
|
||||
{
|
||||
// 0, 1, 2 represent revolute, prismatic, and spherical joint types respectively. Skip the fixed joints.
|
||||
|
||||
double curPos = startingPositions[DofIndex];
|
||||
q_current[DofIndex] = curPos;
|
||||
q[DofIndex + baseDofs] = curPos;
|
||||
@@ -10348,21 +10377,44 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
|
||||
tree->calculateJacobians(q);
|
||||
btInverseDynamics::mat3x jac_t(3, numDofs + baseDofs);
|
||||
btInverseDynamics::mat3x jac_r(3, numDofs + baseDofs);
|
||||
// Note that inverse dynamics uses zero-based indexing of bodies, not starting from -1 for the base link.
|
||||
tree->getBodyJacobianTrans(endEffectorLinkIndex + 1, &jac_t);
|
||||
tree->getBodyJacobianRot(endEffectorLinkIndex + 1, &jac_r);
|
||||
|
||||
//calculatePositionKinematics is already done inside calculateInverseDynamics
|
||||
tree->getBodyOrigin(endEffectorLinkIndex + 1, &world_origin);
|
||||
tree->getBodyTransform(endEffectorLinkIndex + 1, &world_rot);
|
||||
|
||||
for (int i = 0; i < 3; ++i)
|
||||
currentDiff = 0;
|
||||
|
||||
endEffectorCurrentWorldPositions.resize(0);
|
||||
endEffectorCurrentWorldPositions.reserve(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 3);
|
||||
|
||||
for (int ne = 0; ne < clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices; ne++)
|
||||
{
|
||||
for (int j = 0; j < numDofs; ++j)
|
||||
|
||||
int endEffectorLinkIndex2 = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[ne];
|
||||
|
||||
// Note that inverse dynamics uses zero-based indexing of bodies, not starting from -1 for the base link.
|
||||
tree->getBodyJacobianTrans(endEffectorLinkIndex2 + 1, &jac_t);
|
||||
tree->getBodyJacobianRot(endEffectorLinkIndex2 + 1, &jac_r);
|
||||
|
||||
//calculatePositionKinematics is already done inside calculateInverseDynamics
|
||||
|
||||
tree->getBodyOrigin(endEffectorLinkIndex2 + 1, &world_origin);
|
||||
tree->getBodyTransform(endEffectorLinkIndex2 + 1, &world_rot);
|
||||
|
||||
for (int i = 0; i < 3; ++i)
|
||||
{
|
||||
jacobian_linear[i * numDofs + j] = jac_t(i, (baseDofs + j));
|
||||
jacobian_angular[i * numDofs + j] = jac_r(i, (baseDofs + j));
|
||||
for (int j = 0; j < numDofs; ++j)
|
||||
{
|
||||
jacobian_linear[(ne*3+i) * numDofs + j] = jac_t(i, (baseDofs + j));
|
||||
jacobian_angular[(ne * 3 + i) * numDofs + j] = jac_r(i, (baseDofs + j));
|
||||
}
|
||||
}
|
||||
|
||||
endEffectorCurrentWorldPositions.push_back(world_origin[0]);
|
||||
endEffectorCurrentWorldPositions.push_back(world_origin[1]);
|
||||
endEffectorCurrentWorldPositions.push_back(world_origin[2]);
|
||||
|
||||
btInverseDynamics::vec3 targetPos(btVector3(endEffectorTargetWorldPositions[ne*3+0],
|
||||
endEffectorTargetWorldPositions[ne * 3 + 1],
|
||||
endEffectorTargetWorldPositions[ne * 3 + 2]));
|
||||
//diff
|
||||
currentDiff = btMax(currentDiff, (world_origin - targetPos).length());
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -10451,13 +10503,8 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
|
||||
endEffectorBaseCoord.getOrigin().serializeDouble(endEffectorWorldPosition);
|
||||
endEffectorBaseCoord.getRotation().serializeDouble(endEffectorWorldOrientation);
|
||||
|
||||
//diff
|
||||
currentDiff = (endEffectorBaseCoord.getOrigin() - targetBaseCoord.getOrigin()).length();
|
||||
|
||||
btVector3DoubleData targetPosBaseCoord;
|
||||
btQuaternionDoubleData targetOrnBaseCoord;
|
||||
targetBaseCoord.getOrigin().serializeDouble(targetPosBaseCoord);
|
||||
targetBaseCoord.getRotation().serializeDouble(targetOrnBaseCoord);
|
||||
|
||||
|
||||
// Set joint damping coefficents. A small default
|
||||
// damping constant is added to prevent singularity
|
||||
@@ -10477,25 +10524,48 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
|
||||
ikHelperPtr->setDampingCoeff(numDofs, &joint_damping[0]);
|
||||
|
||||
double targetDampCoeff[6] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
|
||||
bool performedIK = false;
|
||||
|
||||
if (clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices==1)
|
||||
{
|
||||
|
||||
BT_PROFILE("computeIK");
|
||||
ikHelperPtr->computeIK(targetPosBaseCoord.m_floats, targetOrnBaseCoord.m_floats,
|
||||
ikHelperPtr->computeIK(&endEffectorTargetWorldPositions[0],
|
||||
&endEffectorTargetWorldOrientations[0],
|
||||
endEffectorWorldPosition.m_floats, endEffectorWorldOrientation.m_floats,
|
||||
&q_current[0],
|
||||
numDofs, clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex,
|
||||
numDofs, clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0],
|
||||
&q_new[0], ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize * 2, targetDampCoeff);
|
||||
performedIK = true;
|
||||
}
|
||||
serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
|
||||
for (int i = 0; i < numDofs; i++)
|
||||
else
|
||||
{
|
||||
serverCmd.m_inverseKinematicsResultArgs.m_jointPositions[i] = q_new[i];
|
||||
|
||||
if (clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices>1)
|
||||
{
|
||||
ikHelperPtr->computeIK2(&endEffectorTargetWorldPositions[0],
|
||||
&endEffectorCurrentWorldPositions[0],
|
||||
clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices,
|
||||
//endEffectorWorldOrientation.m_floats,
|
||||
&q_current[0],
|
||||
numDofs,
|
||||
&q_new[0], ikMethod, &jacobian_linear[0], targetDampCoeff);
|
||||
performedIK = true;
|
||||
}
|
||||
}
|
||||
serverCmd.m_inverseKinematicsResultArgs.m_dofCount = numDofs;
|
||||
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED;
|
||||
for (int i = 0; i < numDofs; i++)
|
||||
if (performedIK)
|
||||
{
|
||||
startingPositions[i] = q_new[i];
|
||||
serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
|
||||
for (int i = 0; i < numDofs; i++)
|
||||
{
|
||||
serverCmd.m_inverseKinematicsResultArgs.m_jointPositions[i] = q_new[i];
|
||||
}
|
||||
serverCmd.m_inverseKinematicsResultArgs.m_dofCount = numDofs;
|
||||
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED;
|
||||
for (int i = 0; i < numDofs; i++)
|
||||
{
|
||||
startingPositions[i] = q_new[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -30,7 +30,7 @@ typedef unsigned long long int smUint64_t;
|
||||
#endif
|
||||
|
||||
#define SHARED_MEMORY_SERVER_TEST_C
|
||||
#define MAX_DEGREE_OF_FREEDOM 128
|
||||
#define MAX_DEGREE_OF_FREEDOM 128
|
||||
#define MAX_NUM_SENSORS 256
|
||||
#define MAX_URDF_FILENAME_LENGTH 1024
|
||||
#define MAX_SDF_FILENAME_LENGTH 1024
|
||||
@@ -740,9 +740,10 @@ struct CalculateInverseKinematicsArgs
|
||||
{
|
||||
int m_bodyUniqueId;
|
||||
// double m_jointPositionsQ[MAX_DEGREE_OF_FREEDOM];
|
||||
double m_targetPosition[3];
|
||||
double m_targetPositions[MAX_DEGREE_OF_FREEDOM*3];
|
||||
int m_numEndEffectorLinkIndices;
|
||||
double m_targetOrientation[4]; //orientation represented as quaternion, x,y,z,w
|
||||
int m_endEffectorLinkIndex;
|
||||
int m_endEffectorLinkIndices[MAX_DEGREE_OF_FREEDOM];
|
||||
double m_lowerLimit[MAX_DEGREE_OF_FREEDOM];
|
||||
double m_upperLimit[MAX_DEGREE_OF_FREEDOM];
|
||||
double m_jointRange[MAX_DEGREE_OF_FREEDOM];
|
||||
|
||||
Reference in New Issue
Block a user