Merge pull request #2322 from erwincoumans/master

PyBullet.calculateInverseKinematics2 for IK with multiple end-effector locations
This commit is contained in:
erwincoumans
2019-07-10 19:58:17 -07:00
committed by GitHub
11 changed files with 549 additions and 83 deletions

View File

@@ -46,7 +46,7 @@ bool IKTrajectoryHelper::computeIK(const double endEffectorTargetPosition[3],
{
bool useAngularPart = (ikMethod == IK2_VEL_DLS_WITH_ORIENTATION || ikMethod == IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE || ikMethod == IK2_VEL_SDLS_WITH_ORIENTATION) ? true : false;
Jacobian ikJacobian(useAngularPart, numQ);
Jacobian ikJacobian(useAngularPart, numQ, 1);
ikJacobian.Reset();
@@ -185,6 +185,115 @@ bool IKTrajectoryHelper::computeIK(const double endEffectorTargetPosition[3],
return true;
}
bool IKTrajectoryHelper::computeIK2(
const double* endEffectorTargetPositions,
const double* endEffectorCurrentPositions,
int numEndEffectors,
const double* q_current, int numQ,
double* q_new, int ikMethod, const double* linear_jacobians, const double dampIk[6])
{
bool useAngularPart = false;//for now (ikMethod == IK2_VEL_DLS_WITH_ORIENTATION || ikMethod == IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE || ikMethod == IK2_VEL_SDLS_WITH_ORIENTATION) ? true : false;
Jacobian ikJacobian(useAngularPart, numQ, numEndEffectors);
ikJacobian.Reset();
bool UseJacobianTargets1 = false;
if (UseJacobianTargets1)
{
ikJacobian.SetJtargetActive();
}
else
{
ikJacobian.SetJendActive();
}
VectorRn deltaC(numEndEffectors *3);
MatrixRmn completeJacobian(numEndEffectors*3, numQ);
for (int ne = 0; ne < numEndEffectors; ne++)
{
VectorR3 targets;
targets.Set(endEffectorTargetPositions[ne*3+0], endEffectorTargetPositions[ne * 3 + 1], endEffectorTargetPositions[ne * 3 + 2]);
// Set one end effector world position from Bullet
VectorRn deltaS(3);
for (int i = 0; i < 3; ++i)
{
deltaS.Set(i, dampIk[i] * (endEffectorTargetPositions[ne*3+i] - endEffectorCurrentPositions[ne*3+i]));
}
{
for (int i = 0; i < 3; ++i)
{
deltaC.Set(ne*3+i, deltaS[i]);
for (int j = 0; j < numQ; ++j)
{
completeJacobian.Set(ne * 3 + i, j, linear_jacobians[(ne*3+i * numQ) + j]);
}
}
}
}
ikJacobian.SetDeltaS(deltaC);
ikJacobian.SetJendTrans(completeJacobian);
// Calculate the change in theta values
switch (ikMethod)
{
case IK2_JACOB_TRANS:
ikJacobian.CalcDeltaThetasTranspose(); // Jacobian transpose method
break;
case IK2_DLS:
case IK2_VEL_DLS_WITH_ORIENTATION:
case IK2_VEL_DLS:
//ikJacobian.CalcDeltaThetasDLS(); // Damped least squares method
assert(m_data->m_dampingCoeff.GetLength() == numQ);
ikJacobian.CalcDeltaThetasDLS2(m_data->m_dampingCoeff);
break;
case IK2_VEL_DLS_WITH_NULLSPACE:
case IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE:
assert(m_data->m_nullSpaceVelocity.GetLength() == numQ);
ikJacobian.CalcDeltaThetasDLSwithNullspace(m_data->m_nullSpaceVelocity);
break;
case IK2_DLS_SVD:
ikJacobian.CalcDeltaThetasDLSwithSVD();
break;
case IK2_PURE_PSEUDO:
ikJacobian.CalcDeltaThetasPseudoinverse(); // Pure pseudoinverse method
break;
case IK2_SDLS:
case IK2_VEL_SDLS:
case IK2_VEL_SDLS_WITH_ORIENTATION:
ikJacobian.CalcDeltaThetasSDLS(); // Selectively damped least squares method
break;
default:
ikJacobian.ZeroDeltaThetas();
break;
}
// Use for velocity IK, update theta dot
//ikJacobian.UpdateThetaDot();
// Use for position IK, incrementally update theta
//ikJacobian.UpdateThetas();
// Apply the change in the theta values
//ikJacobian.UpdatedSClampValue(&targets);
for (int i = 0; i < numQ; i++)
{
// Use for velocity IK
q_new[i] = ikJacobian.dTheta[i] + q_current[i];
// Use for position IK
//q_new[i] = m_data->m_ikNodes[i]->GetTheta();
}
return true;
}
bool IKTrajectoryHelper::computeNullspaceVel(int numQ, const double* q_current, const double* lower_limit, const double* upper_limit, const double* joint_range, const double* rest_pose)
{
m_data->m_nullSpaceVelocity.SetLength(numQ);

View File

@@ -31,6 +31,13 @@ public:
const double* q_old, int numQ, int endEffectorIndex,
double* q_new, int ikMethod, const double* linear_jacobian, const double* angular_jacobian, int jacobian_size, const double dampIk[6]);
bool computeIK2(
const double* endEffectorTargetPositions,
const double* endEffectorCurrentPositions,
int numEndEffectors,
const double* q_current, int numQ,
double* q_new, int ikMethod, const double* linear_jacobians, const double dampIk[6]);
bool computeNullspaceVel(int numQ, const double* q_current, const double* lower_limit, const double* upper_limit, const double* joint_range, const double* rest_pose);
bool setDampingCoeff(int numQ, const double* coeff);
};

View File

@@ -4905,28 +4905,51 @@ B3_SHARED_API void b3CalculateInverseKinematicsAddTargetPurePosition(b3SharedMem
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_TARGET_POSITION;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0] = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_targetPositions[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPositions[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPositions[2] = targetPosition[2];
command->m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices = 1;
command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = 0;
command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = 0;
command->m_calculateInverseKinematicsArguments.m_targetOrientation[2] = 0;
command->m_calculateInverseKinematicsArguments.m_targetOrientation[3] = 1;
}
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetsPurePosition(b3SharedMemoryCommandHandle commandHandle, int numEndEffectorLinkIndices, const int* endEffectorIndices, const double* targetPositions)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_TARGET_POSITION;
command->m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices = numEndEffectorLinkIndices;
for (int i = 0; i < numEndEffectorLinkIndices; i++)
{
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[i] = endEffectorIndices[i];
command->m_calculateInverseKinematicsArguments.m_targetPositions[i * 3 + 0] = targetPositions[i * 3 + 0];
command->m_calculateInverseKinematicsArguments.m_targetPositions[i * 3 + 1] = targetPositions[i * 3 + 1];
command->m_calculateInverseKinematicsArguments.m_targetPositions[i * 3 + 2] = targetPositions[i * 3 + 2];
}
command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = 0;
command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = 0;
command->m_calculateInverseKinematicsArguments.m_targetOrientation[2] = 0;
command->m_calculateInverseKinematicsArguments.m_targetOrientation[3] = 1;
}
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetPositionWithOrientation(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[3], const double targetOrientation[4])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_TARGET_POSITION + IK_HAS_TARGET_ORIENTATION;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0] = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices = 1;
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
command->m_calculateInverseKinematicsArguments.m_targetPositions[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPositions[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPositions[2] = targetPosition[2];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = targetOrientation[0];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = targetOrientation[1];
@@ -4940,11 +4963,12 @@ B3_SHARED_API void b3CalculateInverseKinematicsPosWithNullSpaceVel(b3SharedMemor
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_TARGET_POSITION + IK_HAS_NULL_SPACE_VELOCITY;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0] = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices = 1;
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
command->m_calculateInverseKinematicsArguments.m_targetPositions[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPositions[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPositions[2] = targetPosition[2];
for (int i = 0; i < numDof; ++i)
{
@@ -4961,11 +4985,12 @@ B3_SHARED_API void b3CalculateInverseKinematicsPosOrnWithNullSpaceVel(b3SharedMe
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_TARGET_POSITION + IK_HAS_TARGET_ORIENTATION + IK_HAS_NULL_SPACE_VELOCITY;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0] = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices = 1;
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
command->m_calculateInverseKinematicsArguments.m_targetPositions[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPositions[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPositions[2] = targetPosition[2];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = targetOrientation[0];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = targetOrientation[1];

View File

@@ -424,6 +424,7 @@ extern "C"
///compute the joint positions to move the end effector to a desired target using inverse kinematics
B3_SHARED_API b3SharedMemoryCommandHandle b3CalculateInverseKinematicsCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId);
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetPurePosition(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[/*3*/]);
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetsPurePosition(b3SharedMemoryCommandHandle commandHandle, int numEndEffectorLinkIndices, const int* endEffectorIndices, const double* targetPositions);
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetPositionWithOrientation(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[/*3*/], const double targetOrientation[/*4*/]);
B3_SHARED_API void b3CalculateInverseKinematicsPosWithNullSpaceVel(b3SharedMemoryCommandHandle commandHandle, int numDof, int endEffectorLinkIndex, const double targetPosition[/*3*/], const double* lowerLimit, const double* upperLimit, const double* jointRange, const double* restPose);
B3_SHARED_API void b3CalculateInverseKinematicsPosOrnWithNullSpaceVel(b3SharedMemoryCommandHandle commandHandle, int numDof, int endEffectorLinkIndex, const double targetPosition[/*3*/], const double targetOrientation[/*4*/], const double* lowerLimit, const double* upperLimit, const double* jointRange, const double* restPose);

View File

@@ -10227,34 +10227,10 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
ikHelperPtr = tmpHelper;
}
int endEffectorLinkIndex = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex;
btAlignedObjectArray<double> startingPositions;
startingPositions.reserve(bodyHandle->m_multiBody->getNumLinks());
btVector3 targetPosWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetPosition[0],
clientCmd.m_calculateInverseKinematicsArguments.m_targetPosition[1],
clientCmd.m_calculateInverseKinematicsArguments.m_targetPosition[2]);
btQuaternion targetOrnWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[0],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[1],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[2],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[3]);
btTransform targetBaseCoord;
if (clientCmd.m_updateFlags & IK_HAS_CURRENT_JOINT_POSITIONS)
{
targetBaseCoord.setOrigin(targetPosWorld);
targetBaseCoord.setRotation(targetOrnWorld);
}
else
{
btTransform targetWorld;
targetWorld.setOrigin(targetPosWorld);
targetWorld.setRotation(targetOrnWorld);
btTransform tr = bodyHandle->m_multiBody->getBaseWorldTransform();
targetBaseCoord = tr.inverse() * targetWorld;
}
{
int DofIndex = 0;
@@ -10290,6 +10266,9 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
}
btScalar currentDiff = 1e30f;
b3AlignedObjectArray<double> endEffectorTargetWorldPositions;
b3AlignedObjectArray<double> endEffectorTargetWorldOrientations;
b3AlignedObjectArray<double> endEffectorCurrentWorldPositions;
b3AlignedObjectArray<double> jacobian_linear;
b3AlignedObjectArray<double> jacobian_angular;
btAlignedObjectArray<double> q_current;
@@ -10302,13 +10281,64 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
btInverseDynamics::vecx nu(numDofs + baseDofs), qdot(numDofs + baseDofs), q(numDofs + baseDofs), joint_force(numDofs + baseDofs);
endEffectorTargetWorldPositions.resize(0);
endEffectorTargetWorldPositions.reserve(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 3);
endEffectorTargetWorldOrientations.resize(0);
endEffectorTargetWorldOrientations.resize(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 4);
bool validEndEffectorLinkIndices = true;
for (int ne = 0; ne < clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices; ne++)
{
int endEffectorLinkIndex = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[ne];
validEndEffectorLinkIndices = validEndEffectorLinkIndices && (endEffectorLinkIndex < bodyHandle->m_multiBody->getNumLinks());
btVector3 targetPosWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[ne*3+0],
clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[ne * 3 + 1],
clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[ne * 3 + 2]);
btQuaternion targetOrnWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 0],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 1],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 2],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 3]);
btTransform targetBaseCoord;
if (clientCmd.m_updateFlags & IK_HAS_CURRENT_JOINT_POSITIONS)
{
targetBaseCoord.setOrigin(targetPosWorld);
targetBaseCoord.setRotation(targetOrnWorld);
}
else
{
btTransform targetWorld;
targetWorld.setOrigin(targetPosWorld);
targetWorld.setRotation(targetOrnWorld);
btTransform tr = bodyHandle->m_multiBody->getBaseWorldTransform();
targetBaseCoord = tr.inverse() * targetWorld;
}
btVector3DoubleData targetPosBaseCoord;
btQuaternionDoubleData targetOrnBaseCoord;
targetBaseCoord.getOrigin().serializeDouble(targetPosBaseCoord);
targetBaseCoord.getRotation().serializeDouble(targetOrnBaseCoord);
endEffectorTargetWorldPositions.push_back(targetPosBaseCoord.m_floats[0]);
endEffectorTargetWorldPositions.push_back(targetPosBaseCoord.m_floats[1]);
endEffectorTargetWorldPositions.push_back(targetPosBaseCoord.m_floats[2]);
endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[0]);
endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[1]);
endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[2]);
endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[3]);
}
for (int i = 0; i < numIterations && currentDiff > residualThreshold; i++)
{
BT_PROFILE("InverseKinematics1Step");
if (ikHelperPtr && (endEffectorLinkIndex < bodyHandle->m_multiBody->getNumLinks()))
if (ikHelperPtr && validEndEffectorLinkIndices)
{
jacobian_linear.resize(3 * numDofs);
jacobian_angular.resize(3 * numDofs);
jacobian_linear.resize(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices*3 * numDofs);
jacobian_angular.resize(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices*3 * numDofs);
int jacSize = 0;
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
@@ -10329,7 +10359,6 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
if (bodyHandle->m_multiBody->getLink(i).m_jointType >= 0 && bodyHandle->m_multiBody->getLink(i).m_jointType <= 2)
{
// 0, 1, 2 represent revolute, prismatic, and spherical joint types respectively. Skip the fixed joints.
double curPos = startingPositions[DofIndex];
q_current[DofIndex] = curPos;
q[DofIndex + baseDofs] = curPos;
@@ -10348,21 +10377,44 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
tree->calculateJacobians(q);
btInverseDynamics::mat3x jac_t(3, numDofs + baseDofs);
btInverseDynamics::mat3x jac_r(3, numDofs + baseDofs);
// Note that inverse dynamics uses zero-based indexing of bodies, not starting from -1 for the base link.
tree->getBodyJacobianTrans(endEffectorLinkIndex + 1, &jac_t);
tree->getBodyJacobianRot(endEffectorLinkIndex + 1, &jac_r);
//calculatePositionKinematics is already done inside calculateInverseDynamics
tree->getBodyOrigin(endEffectorLinkIndex + 1, &world_origin);
tree->getBodyTransform(endEffectorLinkIndex + 1, &world_rot);
for (int i = 0; i < 3; ++i)
currentDiff = 0;
endEffectorCurrentWorldPositions.resize(0);
endEffectorCurrentWorldPositions.reserve(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 3);
for (int ne = 0; ne < clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices; ne++)
{
for (int j = 0; j < numDofs; ++j)
int endEffectorLinkIndex2 = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[ne];
// Note that inverse dynamics uses zero-based indexing of bodies, not starting from -1 for the base link.
tree->getBodyJacobianTrans(endEffectorLinkIndex2 + 1, &jac_t);
tree->getBodyJacobianRot(endEffectorLinkIndex2 + 1, &jac_r);
//calculatePositionKinematics is already done inside calculateInverseDynamics
tree->getBodyOrigin(endEffectorLinkIndex2 + 1, &world_origin);
tree->getBodyTransform(endEffectorLinkIndex2 + 1, &world_rot);
for (int i = 0; i < 3; ++i)
{
jacobian_linear[i * numDofs + j] = jac_t(i, (baseDofs + j));
jacobian_angular[i * numDofs + j] = jac_r(i, (baseDofs + j));
for (int j = 0; j < numDofs; ++j)
{
jacobian_linear[(ne*3+i) * numDofs + j] = jac_t(i, (baseDofs + j));
jacobian_angular[(ne * 3 + i) * numDofs + j] = jac_r(i, (baseDofs + j));
}
}
endEffectorCurrentWorldPositions.push_back(world_origin[0]);
endEffectorCurrentWorldPositions.push_back(world_origin[1]);
endEffectorCurrentWorldPositions.push_back(world_origin[2]);
btInverseDynamics::vec3 targetPos(btVector3(endEffectorTargetWorldPositions[ne*3+0],
endEffectorTargetWorldPositions[ne * 3 + 1],
endEffectorTargetWorldPositions[ne * 3 + 2]));
//diff
currentDiff = btMax(currentDiff, (world_origin - targetPos).length());
}
}
}
@@ -10451,13 +10503,8 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
endEffectorBaseCoord.getOrigin().serializeDouble(endEffectorWorldPosition);
endEffectorBaseCoord.getRotation().serializeDouble(endEffectorWorldOrientation);
//diff
currentDiff = (endEffectorBaseCoord.getOrigin() - targetBaseCoord.getOrigin()).length();
btVector3DoubleData targetPosBaseCoord;
btQuaternionDoubleData targetOrnBaseCoord;
targetBaseCoord.getOrigin().serializeDouble(targetPosBaseCoord);
targetBaseCoord.getRotation().serializeDouble(targetOrnBaseCoord);
// Set joint damping coefficents. A small default
// damping constant is added to prevent singularity
@@ -10477,25 +10524,48 @@ bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(con
ikHelperPtr->setDampingCoeff(numDofs, &joint_damping[0]);
double targetDampCoeff[6] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
bool performedIK = false;
if (clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices==1)
{
BT_PROFILE("computeIK");
ikHelperPtr->computeIK(targetPosBaseCoord.m_floats, targetOrnBaseCoord.m_floats,
ikHelperPtr->computeIK(&endEffectorTargetWorldPositions[0],
&endEffectorTargetWorldOrientations[0],
endEffectorWorldPosition.m_floats, endEffectorWorldOrientation.m_floats,
&q_current[0],
numDofs, clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex,
numDofs, clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0],
&q_new[0], ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize * 2, targetDampCoeff);
performedIK = true;
}
serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
for (int i = 0; i < numDofs; i++)
else
{
serverCmd.m_inverseKinematicsResultArgs.m_jointPositions[i] = q_new[i];
if (clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices>1)
{
ikHelperPtr->computeIK2(&endEffectorTargetWorldPositions[0],
&endEffectorCurrentWorldPositions[0],
clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices,
//endEffectorWorldOrientation.m_floats,
&q_current[0],
numDofs,
&q_new[0], ikMethod, &jacobian_linear[0], targetDampCoeff);
performedIK = true;
}
}
serverCmd.m_inverseKinematicsResultArgs.m_dofCount = numDofs;
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED;
for (int i = 0; i < numDofs; i++)
if (performedIK)
{
startingPositions[i] = q_new[i];
serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
for (int i = 0; i < numDofs; i++)
{
serverCmd.m_inverseKinematicsResultArgs.m_jointPositions[i] = q_new[i];
}
serverCmd.m_inverseKinematicsResultArgs.m_dofCount = numDofs;
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED;
for (int i = 0; i < numDofs; i++)
{
startingPositions[i] = q_new[i];
}
}
}
}

View File

@@ -30,7 +30,7 @@ typedef unsigned long long int smUint64_t;
#endif
#define SHARED_MEMORY_SERVER_TEST_C
#define MAX_DEGREE_OF_FREEDOM 128
#define MAX_DEGREE_OF_FREEDOM 128
#define MAX_NUM_SENSORS 256
#define MAX_URDF_FILENAME_LENGTH 1024
#define MAX_SDF_FILENAME_LENGTH 1024
@@ -740,9 +740,10 @@ struct CalculateInverseKinematicsArgs
{
int m_bodyUniqueId;
// double m_jointPositionsQ[MAX_DEGREE_OF_FREEDOM];
double m_targetPosition[3];
double m_targetPositions[MAX_DEGREE_OF_FREEDOM*3];
int m_numEndEffectorLinkIndices;
double m_targetOrientation[4]; //orientation represented as quaternion, x,y,z,w
int m_endEffectorLinkIndex;
int m_endEffectorLinkIndices[MAX_DEGREE_OF_FREEDOM];
double m_lowerLimit[MAX_DEGREE_OF_FREEDOM];
double m_upperLimit[MAX_DEGREE_OF_FREEDOM];
double m_jointRange[MAX_DEGREE_OF_FREEDOM];

View File

@@ -84,10 +84,10 @@ Jacobian::Jacobian(Tree* tree)
Reset();
}
Jacobian::Jacobian(bool useAngularJacobian, int nDof)
Jacobian::Jacobian(bool useAngularJacobian, int nDof, int numEndEffectors)
{
m_tree = 0;
m_nEffector = 1;
m_nEffector = numEndEffectors;
if (useAngularJacobian)
{

View File

@@ -57,7 +57,7 @@ class Jacobian
{
public:
Jacobian(Tree*);
Jacobian(bool useAngularJacobian, int nDof);
Jacobian(bool useAngularJacobian, int nDof, int numEndEffectors);
void ComputeJacobian(VectorR3* targets);
const MatrixRmn& ActiveJacobian() const { return *Jactive; }

View File

@@ -32,8 +32,8 @@ def getRayFromTo(mouseX, mouseY):
return rayFrom, rayTo
cid = p.connect(p.SHARED_MEMORY_GUI)
#cid = p.connect(p.GUI)
#cid = p.connect(p.SHARED_MEMORY_GUI)
cid = p.connect(p.GUI)
if (cid < 0):
p.connect(p.GUI)
p.setPhysicsEngineParameter(numSolverIterations=10)

View File

@@ -3,7 +3,7 @@ import math
import time
dt = 1./240.
p.connect(p.SHARED_MEMORY_GUI)
p.connect(p.GUI)#SHARED_MEMORY_GUI)
p.loadURDF("r2d2.urdf",[0,0,1])
p.loadURDF("plane.urdf")
p.setGravity(0,0,-10)

View File

@@ -51,7 +51,7 @@
#endif
static PyObject* SpamError;
#define B3_MAX_NUM_END_EFFECTORS 128
#define MAX_PHYSICS_CLIENTS 1024
static b3PhysicsClientHandle sPhysicsClients1[MAX_PHYSICS_CLIENTS] = {0};
static int sPhysicsClientsGUI[MAX_PHYSICS_CLIENTS] = {0};
@@ -10009,6 +10009,253 @@ static PyObject* pybullet_calculateInverseKinematics(PyObject* self,
return Py_None;
}
///Inverse Kinematics binding
static PyObject* pybullet_calculateInverseKinematics2(PyObject* self,
PyObject* args, PyObject* keywds)
{
int bodyUniqueId;
int endEffectorLinkIndex=-1;
PyObject* targetPosObj = 0;
//PyObject* targetOrnObj = 0;
int solver = 0; // the default IK solver is DLS
int physicsClientId = 0;
b3PhysicsClientHandle sm = 0;
PyObject* endEffectorLinkIndicesObj = 0;
PyObject* lowerLimitsObj = 0;
PyObject* upperLimitsObj = 0;
PyObject* jointRangesObj = 0;
PyObject* restPosesObj = 0;
PyObject* jointDampingObj = 0;
PyObject* currentPositionsObj = 0;
int maxNumIterations = -1;
double residualThreshold = -1;
static char* kwlist[] = { "bodyUniqueId", "endEffectorLinkIndices", "targetPositions", "lowerLimits", "upperLimits", "jointRanges", "restPoses", "jointDamping", "solver", "currentPositions", "maxNumIterations", "residualThreshold", "physicsClientId", NULL };
if (!PyArg_ParseTupleAndKeywords(args, keywds, "iOO|OOOOOOiOidi", kwlist, &bodyUniqueId, &endEffectorLinkIndicesObj, &targetPosObj, &lowerLimitsObj, &upperLimitsObj, &jointRangesObj, &restPosesObj, &jointDampingObj, &solver, &currentPositionsObj, &maxNumIterations, &residualThreshold, &physicsClientId))
{
return NULL;
}
sm = getPhysicsClient(physicsClientId);
if (sm == 0)
{
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
{
int numEndEffectorPositions = extractVertices(targetPosObj, 0, B3_MAX_NUM_END_EFFECTORS);
int numIndices = extractIndices(endEffectorLinkIndicesObj, 0, B3_MAX_NUM_END_EFFECTORS);
double* positions = numEndEffectorPositions ? malloc(numEndEffectorPositions * 3 * sizeof(double)) : 0;
int* indices = numIndices ? malloc(numIndices * sizeof(int)) : 0;
numEndEffectorPositions = extractVertices(targetPosObj, positions, B3_MAX_NUM_VERTICES);
if (endEffectorLinkIndicesObj)
{
numIndices = extractIndices(endEffectorLinkIndicesObj, indices, B3_MAX_NUM_INDICES);
}
double pos[3] = { 0, 0, 0 };
double ori[4] = { 0, 0, 0, 1 };
int hasPos = numEndEffectorPositions > 0;
int hasOrn = 0;// pybullet_internalSetVector4d(targetOrnObj, ori);
int szLowerLimits = lowerLimitsObj ? PySequence_Size(lowerLimitsObj) : 0;
int szUpperLimits = upperLimitsObj ? PySequence_Size(upperLimitsObj) : 0;
int szJointRanges = jointRangesObj ? PySequence_Size(jointRangesObj) : 0;
int szRestPoses = restPosesObj ? PySequence_Size(restPosesObj) : 0;
int szJointDamping = jointDampingObj ? PySequence_Size(jointDampingObj) : 0;
int szCurrentPositions = currentPositionsObj ? PySequence_Size(currentPositionsObj) : 0;
int numJoints = b3GetNumJoints(sm, bodyUniqueId);
int dofCount = b3ComputeDofCount(sm, bodyUniqueId);
int hasNullSpace = 0;
int hasJointDamping = 0;
int hasCurrentPositions = 0;
double* lowerLimits = 0;
double* upperLimits = 0;
double* jointRanges = 0;
double* restPoses = 0;
double* jointDamping = 0;
double* currentPositions = 0;
if (dofCount && (szLowerLimits == dofCount) && (szUpperLimits == dofCount) &&
(szJointRanges == dofCount) && (szRestPoses == dofCount))
{
int szInBytes = sizeof(double) * dofCount;
int i;
lowerLimits = (double*)malloc(szInBytes);
upperLimits = (double*)malloc(szInBytes);
jointRanges = (double*)malloc(szInBytes);
restPoses = (double*)malloc(szInBytes);
for (i = 0; i < dofCount; i++)
{
lowerLimits[i] = pybullet_internalGetFloatFromSequence(lowerLimitsObj, i);
upperLimits[i] = pybullet_internalGetFloatFromSequence(upperLimitsObj, i);
jointRanges[i] = pybullet_internalGetFloatFromSequence(jointRangesObj, i);
restPoses[i] = pybullet_internalGetFloatFromSequence(restPosesObj, i);
}
hasNullSpace = 1;
}
if (szCurrentPositions > 0)
{
if (szCurrentPositions != dofCount)
{
PyErr_SetString(SpamError,
"calculateInverseKinematics the size of input current positions needs to be equal to the number of degrees of freedom.");
free(lowerLimits);
free(upperLimits);
free(jointRanges);
free(restPoses);
return NULL;
}
else
{
int szInBytes = sizeof(double) * szCurrentPositions;
int i;
currentPositions = (double*)malloc(szInBytes);
for (i = 0; i < szCurrentPositions; i++)
{
currentPositions[i] = pybullet_internalGetFloatFromSequence(currentPositionsObj, i);
}
hasCurrentPositions = 1;
}
}
if (szJointDamping > 0)
{
if (szJointDamping < dofCount)
{
printf("calculateInverseKinematics: the size of input joint damping values should be equal to the number of degrees of freedom, not using joint damping.");
}
else
{
int szInBytes = sizeof(double) * szJointDamping;
int i;
//if (szJointDamping != dofCount)
//{
// printf("calculateInverseKinematics: the size of input joint damping values should be equal to the number of degrees of freedom, ignoring the additonal values.");
//}
jointDamping = (double*)malloc(szInBytes);
for (i = 0; i < szJointDamping; i++)
{
jointDamping[i] = pybullet_internalGetFloatFromSequence(jointDampingObj, i);
}
hasJointDamping = 1;
}
}
if (hasPos)
{
b3SharedMemoryStatusHandle statusHandle;
int numPos = 0;
int resultBodyIndex;
int result;
b3SharedMemoryCommandHandle command = b3CalculateInverseKinematicsCommandInit(sm, bodyUniqueId);
b3CalculateInverseKinematicsSelectSolver(command, solver);
if (hasCurrentPositions)
{
b3CalculateInverseKinematicsSetCurrentPositions(command, dofCount, currentPositions);
}
if (maxNumIterations > 0)
{
b3CalculateInverseKinematicsSetMaxNumIterations(command, maxNumIterations);
}
if (residualThreshold >= 0)
{
b3CalculateInverseKinematicsSetResidualThreshold(command, residualThreshold);
}
if (hasNullSpace)
{
if (hasOrn)
{
b3CalculateInverseKinematicsPosOrnWithNullSpaceVel(command, dofCount, endEffectorLinkIndex, pos, ori, lowerLimits, upperLimits, jointRanges, restPoses);
}
else
{
b3CalculateInverseKinematicsPosWithNullSpaceVel(command, dofCount, endEffectorLinkIndex, pos, lowerLimits, upperLimits, jointRanges, restPoses);
}
}
else
{
if (hasOrn)
{
b3CalculateInverseKinematicsAddTargetPositionWithOrientation(command, endEffectorLinkIndex, pos, ori);
}
else
{
//b3CalculateInverseKinematicsAddTargetPurePosition(command, endEffectorLinkIndex, pos);
b3CalculateInverseKinematicsAddTargetsPurePosition(command, numEndEffectorPositions, indices, positions);
}
}
if (hasJointDamping)
{
b3CalculateInverseKinematicsSetJointDamping(command, dofCount, jointDamping);
}
free(currentPositions);
free(jointDamping);
free(lowerLimits);
free(upperLimits);
free(jointRanges);
free(restPoses);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
result = b3GetStatusInverseKinematicsJointPositions(statusHandle,
&resultBodyIndex,
&numPos,
0);
if (result && numPos)
{
int i;
PyObject* pylist;
double* ikOutPutJointPos = (double*)malloc(numPos * sizeof(double));
result = b3GetStatusInverseKinematicsJointPositions(statusHandle,
&resultBodyIndex,
&numPos,
ikOutPutJointPos);
pylist = PyTuple_New(numPos);
for (i = 0; i < numPos; i++)
{
PyTuple_SetItem(pylist, i,
PyFloat_FromDouble(ikOutPutJointPos[i]));
}
free(ikOutPutJointPos);
return pylist;
}
else
{
PyErr_SetString(SpamError,
"Error in calculateInverseKinematics");
return NULL;
}
}
else
{
PyErr_SetString(SpamError,
"calculateInverseKinematics couldn't extract position vector3");
return NULL;
}
}
Py_INCREF(Py_None);
return Py_None;
}
/// Given an object id, joint positions, joint velocities and joint
/// accelerations,
/// compute the joint forces using Inverse Dynamics
@@ -10878,6 +11125,12 @@ static PyMethodDef SpamMethods[] = {
"current joint positions and target position"
" for the end effector,"
"compute the inverse kinematics and return the new joint state"},
{ "calculateInverseKinematics2", (PyCFunction)pybullet_calculateInverseKinematics2,
METH_VARARGS | METH_KEYWORDS,
"Inverse Kinematics bindings: Given an object id, "
"current joint positions and target positions"
" for the end effectors,"
"compute the inverse kinematics and return the new joint state" },
{"getVREvents", (PyCFunction)pybullet_getVREvents, METH_VARARGS | METH_KEYWORDS,
"Get Virtual Reality events, for example to track VR controllers position/buttons"},