Get rid of btSolverBody and use btRigidBody directly. btSolverBody didn't improve performance after all, due to random-access
Tweak the BenchmarkDemo a bit: 1) disable deactivation in graphical mode 2) add some settings that increase performance in the BenchmarkDemo2 (1000 stack) from 35ms to 15ms on this quad core (at the cost of a bit of quality)
This commit is contained in:
@@ -261,164 +261,6 @@ void btHingeConstraint::buildJacobian()
|
||||
}
|
||||
}
|
||||
|
||||
void btHingeConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep)
|
||||
{
|
||||
|
||||
///for backwards compatibility during the transition to 'getInfo/getInfo2'
|
||||
if (m_useSolveConstraintObsolete)
|
||||
{
|
||||
|
||||
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
|
||||
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
|
||||
|
||||
btScalar tau = btScalar(0.3);
|
||||
|
||||
//linear part
|
||||
if (!m_angularOnly)
|
||||
{
|
||||
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
|
||||
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
|
||||
|
||||
btVector3 vel1,vel2;
|
||||
bodyA.getVelocityInLocalPointObsolete(rel_pos1,vel1);
|
||||
bodyB.getVelocityInLocalPointObsolete(rel_pos2,vel2);
|
||||
btVector3 vel = vel1 - vel2;
|
||||
|
||||
for (int i=0;i<3;i++)
|
||||
{
|
||||
const btVector3& normal = m_jac[i].m_linearJointAxis;
|
||||
btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();
|
||||
|
||||
btScalar rel_vel;
|
||||
rel_vel = normal.dot(vel);
|
||||
//positional error (zeroth order error)
|
||||
btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
|
||||
btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv;
|
||||
m_appliedImpulse += impulse;
|
||||
btVector3 impulse_vector = normal * impulse;
|
||||
btVector3 ftorqueAxis1 = rel_pos1.cross(normal);
|
||||
btVector3 ftorqueAxis2 = rel_pos2.cross(normal);
|
||||
bodyA.applyImpulse(normal*m_rbA.getInvMass(), m_rbA.getInvInertiaTensorWorld()*ftorqueAxis1,impulse);
|
||||
bodyB.applyImpulse(normal*m_rbB.getInvMass(), m_rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-impulse);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
{
|
||||
///solve angular part
|
||||
|
||||
// get axes in world space
|
||||
btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
|
||||
btVector3 axisB = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(2);
|
||||
|
||||
btVector3 angVelA;
|
||||
bodyA.getAngularVelocity(angVelA);
|
||||
btVector3 angVelB;
|
||||
bodyB.getAngularVelocity(angVelB);
|
||||
|
||||
btVector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA);
|
||||
btVector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB);
|
||||
|
||||
btVector3 angAorthog = angVelA - angVelAroundHingeAxisA;
|
||||
btVector3 angBorthog = angVelB - angVelAroundHingeAxisB;
|
||||
btVector3 velrelOrthog = angAorthog-angBorthog;
|
||||
{
|
||||
|
||||
|
||||
//solve orthogonal angular velocity correction
|
||||
//btScalar relaxation = btScalar(1.);
|
||||
btScalar len = velrelOrthog.length();
|
||||
if (len > btScalar(0.00001))
|
||||
{
|
||||
btVector3 normal = velrelOrthog.normalized();
|
||||
btScalar denom = getRigidBodyA().computeAngularImpulseDenominator(normal) +
|
||||
getRigidBodyB().computeAngularImpulseDenominator(normal);
|
||||
// scale for mass and relaxation
|
||||
//velrelOrthog *= (btScalar(1.)/denom) * m_relaxationFactor;
|
||||
|
||||
bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*velrelOrthog,-(btScalar(1.)/denom));
|
||||
bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*velrelOrthog,(btScalar(1.)/denom));
|
||||
|
||||
}
|
||||
|
||||
//solve angular positional correction
|
||||
btVector3 angularError = axisA.cross(axisB) *(btScalar(1.)/timeStep);
|
||||
btScalar len2 = angularError.length();
|
||||
if (len2>btScalar(0.00001))
|
||||
{
|
||||
btVector3 normal2 = angularError.normalized();
|
||||
btScalar denom2 = getRigidBodyA().computeAngularImpulseDenominator(normal2) +
|
||||
getRigidBodyB().computeAngularImpulseDenominator(normal2);
|
||||
//angularError *= (btScalar(1.)/denom2) * relaxation;
|
||||
|
||||
bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*angularError,(btScalar(1.)/denom2));
|
||||
bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*angularError,-(btScalar(1.)/denom2));
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// solve limit
|
||||
if (m_solveLimit)
|
||||
{
|
||||
btScalar amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (btScalar(1.)/timeStep)*m_biasFactor ) * m_limitSign;
|
||||
|
||||
btScalar impulseMag = amplitude * m_kHinge;
|
||||
|
||||
// Clamp the accumulated impulse
|
||||
btScalar temp = m_accLimitImpulse;
|
||||
m_accLimitImpulse = btMax(m_accLimitImpulse + impulseMag, btScalar(0) );
|
||||
impulseMag = m_accLimitImpulse - temp;
|
||||
|
||||
|
||||
|
||||
bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*axisA,impulseMag * m_limitSign);
|
||||
bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*axisA,-(impulseMag * m_limitSign));
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
//apply motor
|
||||
if (m_enableAngularMotor)
|
||||
{
|
||||
//todo: add limits too
|
||||
btVector3 angularLimit(0,0,0);
|
||||
|
||||
btVector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB;
|
||||
btScalar projRelVel = velrel.dot(axisA);
|
||||
|
||||
btScalar desiredMotorVel = m_motorTargetVelocity;
|
||||
btScalar motor_relvel = desiredMotorVel - projRelVel;
|
||||
|
||||
btScalar unclippedMotorImpulse = m_kHinge * motor_relvel;;
|
||||
|
||||
// accumulated impulse clipping:
|
||||
btScalar fMaxImpulse = m_maxMotorImpulse;
|
||||
btScalar newAccImpulse = m_accMotorImpulse + unclippedMotorImpulse;
|
||||
btScalar clippedMotorImpulse = unclippedMotorImpulse;
|
||||
if (newAccImpulse > fMaxImpulse)
|
||||
{
|
||||
newAccImpulse = fMaxImpulse;
|
||||
clippedMotorImpulse = newAccImpulse - m_accMotorImpulse;
|
||||
}
|
||||
else if (newAccImpulse < -fMaxImpulse)
|
||||
{
|
||||
newAccImpulse = -fMaxImpulse;
|
||||
clippedMotorImpulse = newAccImpulse - m_accMotorImpulse;
|
||||
}
|
||||
m_accMotorImpulse += clippedMotorImpulse;
|
||||
|
||||
bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*axisA,clippedMotorImpulse);
|
||||
bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*axisA,-clippedMotorImpulse);
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
#endif //__SPU__
|
||||
|
||||
|
||||
Reference in New Issue
Block a user