Get rid of btSolverBody and use btRigidBody directly. btSolverBody didn't improve performance after all, due to random-access

Tweak the BenchmarkDemo a bit: 

1) disable deactivation in graphical mode
2) add some settings that increase performance in the BenchmarkDemo2 (1000 stack) from 35ms to 15ms on this quad core (at the cost of a bit of quality)
This commit is contained in:
erwin.coumans
2010-02-11 20:30:56 +00:00
parent bb8d1b11df
commit d4c3633405
26 changed files with 348 additions and 805 deletions

View File

@@ -57,15 +57,15 @@ static inline __m128 _vmathVfDot3( __m128 vec0, __m128 vec1 )
#endif//USE_SIMD
// Project Gauss Seidel or the equivalent Sequential Impulse
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c)
{
#ifdef USE_SIMD
__m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
__m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
__m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
__m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm)));
__m128 deltaVel1Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body1.m_deltaLinearVelocity.mVec128), _vmathVfDot3(c.m_relpos1CrossNormal.mVec128,body1.m_deltaAngularVelocity.mVec128));
__m128 deltaVel2Dotn = _mm_sub_ps(_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.m_deltaAngularVelocity.mVec128),_vmathVfDot3((c.m_contactNormal).mVec128,body2.m_deltaLinearVelocity.mVec128));
__m128 deltaVel1Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), _vmathVfDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128));
__m128 deltaVel2Dotn = _mm_sub_ps(_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128),_vmathVfDot3((c.m_contactNormal).mVec128,body2.internalGetDeltaLinearVelocity().mVec128));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
@@ -78,24 +78,24 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
__m128 upperMinApplied = _mm_sub_ps(upperLimit1,cpAppliedImp);
deltaImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, deltaImpulse), _mm_andnot_ps(resultUpperLess, upperMinApplied) );
c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, c.m_appliedImpulse), _mm_andnot_ps(resultUpperLess, upperLimit1) );
__m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.m_invMass.mVec128);
__m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.m_invMass.mVec128);
__m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128);
__m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128);
__m128 impulseMagnitude = deltaImpulse;
body1.m_deltaLinearVelocity.mVec128 = _mm_add_ps(body1.m_deltaLinearVelocity.mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
body1.m_deltaAngularVelocity.mVec128 = _mm_add_ps(body1.m_deltaAngularVelocity.mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
body2.m_deltaLinearVelocity.mVec128 = _mm_sub_ps(body2.m_deltaLinearVelocity.mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.m_deltaAngularVelocity.mVec128 = _mm_add_ps(body2.m_deltaAngularVelocity.mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
#else
resolveSingleConstraintRowGeneric(body1,body2,c);
#endif
}
// Project Gauss Seidel or the equivalent Sequential Impulse
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGeneric(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGeneric(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c)
{
btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.m_deltaLinearVelocity) + c.m_relpos1CrossNormal.dot(body1.m_deltaAngularVelocity);
const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.m_deltaLinearVelocity) + c.m_relpos2CrossNormal.dot(body2.m_deltaAngularVelocity);
const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
// const btScalar delta_rel_vel = deltaVel1Dotn-deltaVel2Dotn;
deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
@@ -116,19 +116,19 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
{
c.m_appliedImpulse = sum;
}
body1.applyImpulse(c.m_contactNormal*body1.m_invMass,c.m_angularComponentA,deltaImpulse);
body2.applyImpulse(-c.m_contactNormal*body2.m_invMass,c.m_angularComponentB,deltaImpulse);
body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
}
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimitSIMD(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c)
{
#ifdef USE_SIMD
__m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
__m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
__m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
__m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm)));
__m128 deltaVel1Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body1.m_deltaLinearVelocity.mVec128), _vmathVfDot3(c.m_relpos1CrossNormal.mVec128,body1.m_deltaAngularVelocity.mVec128));
__m128 deltaVel2Dotn = _mm_sub_ps(_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.m_deltaAngularVelocity.mVec128),_vmathVfDot3((c.m_contactNormal).mVec128,body2.m_deltaLinearVelocity.mVec128));
__m128 deltaVel1Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), _vmathVfDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128));
__m128 deltaVel2Dotn = _mm_sub_ps(_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128),_vmathVfDot3((c.m_contactNormal).mVec128,body2.internalGetDeltaLinearVelocity().mVec128));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
@@ -138,24 +138,24 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
__m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp);
deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) );
c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) );
__m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.m_invMass.mVec128);
__m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.m_invMass.mVec128);
__m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128);
__m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128);
__m128 impulseMagnitude = deltaImpulse;
body1.m_deltaLinearVelocity.mVec128 = _mm_add_ps(body1.m_deltaLinearVelocity.mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
body1.m_deltaAngularVelocity.mVec128 = _mm_add_ps(body1.m_deltaAngularVelocity.mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
body2.m_deltaLinearVelocity.mVec128 = _mm_sub_ps(body2.m_deltaLinearVelocity.mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.m_deltaAngularVelocity.mVec128 = _mm_add_ps(body2.m_deltaAngularVelocity.mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
#else
resolveSingleConstraintRowLowerLimit(body1,body2,c);
#endif
}
// Project Gauss Seidel or the equivalent Sequential Impulse
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimit(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimit(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c)
{
btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.m_deltaLinearVelocity) + c.m_relpos1CrossNormal.dot(body1.m_deltaAngularVelocity);
const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.m_deltaLinearVelocity) + c.m_relpos2CrossNormal.dot(body2.m_deltaAngularVelocity);
const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
@@ -169,22 +169,22 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
{
c.m_appliedImpulse = sum;
}
body1.applyImpulse(c.m_contactNormal*body1.m_invMass,c.m_angularComponentA,deltaImpulse);
body2.applyImpulse(-c.m_contactNormal*body2.m_invMass,c.m_angularComponentB,deltaImpulse);
body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
}
void btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFriendly(
btSolverBody& body1,
btSolverBody& body2,
btRigidBody& body1,
btRigidBody& body2,
const btSolverConstraint& c)
{
if (c.m_rhsPenetration)
{
gNumSplitImpulseRecoveries++;
btScalar deltaImpulse = c.m_rhsPenetration-btScalar(c.m_appliedPushImpulse)*c.m_cfm;
const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.m_pushVelocity) + c.m_relpos1CrossNormal.dot(body1.m_turnVelocity);
const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.m_pushVelocity) + c.m_relpos2CrossNormal.dot(body2.m_turnVelocity);
const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetPushVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetTurnVelocity());
const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetPushVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetTurnVelocity());
deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
@@ -198,12 +198,12 @@ void btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFri
{
c.m_appliedPushImpulse = sum;
}
body1.internalApplyPushImpulse(c.m_contactNormal*body1.m_invMass,c.m_angularComponentA,deltaImpulse);
body2.internalApplyPushImpulse(-c.m_contactNormal*body2.m_invMass,c.m_angularComponentB,deltaImpulse);
body1.internalApplyPushImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
body2.internalApplyPushImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
}
}
void btSequentialImpulseConstraintSolver::resolveSplitPenetrationSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
void btSequentialImpulseConstraintSolver::resolveSplitPenetrationSIMD(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c)
{
#ifdef USE_SIMD
if (!c.m_rhsPenetration)
@@ -215,8 +215,8 @@ void btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFri
__m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
__m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
__m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhsPenetration), _mm_mul_ps(_mm_set1_ps(c.m_appliedPushImpulse),_mm_set1_ps(c.m_cfm)));
__m128 deltaVel1Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body1.m_pushVelocity.mVec128), _vmathVfDot3(c.m_relpos1CrossNormal.mVec128,body1.m_turnVelocity.mVec128));
__m128 deltaVel2Dotn = _mm_sub_ps(_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.m_turnVelocity.mVec128),_vmathVfDot3((c.m_contactNormal).mVec128,body2.m_pushVelocity.mVec128));
__m128 deltaVel1Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body1.internalGetPushVelocity().mVec128), _vmathVfDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetTurnVelocity().mVec128));
__m128 deltaVel2Dotn = _mm_sub_ps(_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetTurnVelocity().mVec128),_vmathVfDot3((c.m_contactNormal).mVec128,body2.internalGetPushVelocity().mVec128));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
@@ -226,13 +226,13 @@ void btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFri
__m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp);
deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) );
c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) );
__m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.m_invMass.mVec128);
__m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.m_invMass.mVec128);
__m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128);
__m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128);
__m128 impulseMagnitude = deltaImpulse;
body1.m_pushVelocity.mVec128 = _mm_add_ps(body1.m_pushVelocity.mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
body1.m_turnVelocity.mVec128 = _mm_add_ps(body1.m_turnVelocity.mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
body2.m_pushVelocity.mVec128 = _mm_sub_ps(body2.m_pushVelocity.mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.m_turnVelocity.mVec128 = _mm_add_ps(body2.m_turnVelocity.mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
body1.internalGetPushVelocity().mVec128 = _mm_add_ps(body1.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
body1.internalGetTurnVelocity().mVec128 = _mm_add_ps(body1.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
body2.internalGetPushVelocity().mVec128 = _mm_sub_ps(body2.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.internalGetTurnVelocity().mVec128 = _mm_add_ps(body2.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
#else
resolveSplitPenetrationImpulseCacheFriendly(body1,body2,c);
#endif
@@ -277,28 +277,29 @@ int btSequentialImpulseConstraintSolver::btRandInt2 (int n)
}
#if 0
void btSequentialImpulseConstraintSolver::initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject)
{
btRigidBody* rb = collisionObject? btRigidBody::upcast(collisionObject) : 0;
solverBody->m_deltaLinearVelocity.setValue(0.f,0.f,0.f);
solverBody->m_deltaAngularVelocity.setValue(0.f,0.f,0.f);
solverBody->m_pushVelocity.setValue(0.f,0.f,0.f);
solverBody->m_turnVelocity.setValue(0.f,0.f,0.f);
solverBody->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
solverBody->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
solverBody->internalGetPushVelocity().setValue(0.f,0.f,0.f);
solverBody->internalGetTurnVelocity().setValue(0.f,0.f,0.f);
if (rb)
{
solverBody->m_invMass = btVector3(rb->getInvMass(),rb->getInvMass(),rb->getInvMass())*rb->getLinearFactor();
solverBody->internalGetInvMass() = btVector3(rb->getInvMass(),rb->getInvMass(),rb->getInvMass())*rb->getLinearFactor();
solverBody->m_originalBody = rb;
solverBody->m_angularFactor = rb->getAngularFactor();
} else
{
solverBody->m_invMass.setValue(0,0,0);
solverBody->internalGetInvMass().setValue(0,0,0);
solverBody->m_originalBody = 0;
solverBody->m_angularFactor.setValue(1,1,1);
}
}
#endif
@@ -329,19 +330,19 @@ void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirec
btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip)
btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(const btVector3& normalAxis,btRigidBody* solverBodyA,btRigidBody* solverBodyB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip)
{
btRigidBody* body0=btRigidBody::upcast(colObj0);
btRigidBody* body1=btRigidBody::upcast(colObj1);
btSolverConstraint& solverConstraint = m_tmpSolverContactFrictionConstraintPool.expand();
memset(&solverConstraint,0xff,sizeof(btSolverConstraint));
btSolverConstraint& solverConstraint = m_tmpSolverContactFrictionConstraintPool.expandNonInitializing();
//memset(&solverConstraint,0xff,sizeof(btSolverConstraint));
solverConstraint.m_contactNormal = normalAxis;
solverConstraint.m_solverBodyIdA = solverBodyIdA;
solverConstraint.m_solverBodyIdB = solverBodyIdB;
solverConstraint.m_solverBodyA = body0 ? body0 : &getFixedBody();
solverConstraint.m_solverBodyB = body1 ? body1 : &getFixedBody();
solverConstraint.m_frictionIndex = frictionIndex;
solverConstraint.m_friction = cp.m_combinedFriction;
@@ -418,6 +419,7 @@ btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(c
int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject& body)
{
#if 0
int solverBodyIdA = -1;
if (body.getCompanionId() >= 0)
@@ -439,6 +441,8 @@ int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject&
}
}
return solverBodyIdA;
#endif
return 0;
}
#include <stdio.h>
@@ -451,17 +455,13 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
colObj0 = (btCollisionObject*)manifold->getBody0();
colObj1 = (btCollisionObject*)manifold->getBody1();
int solverBodyIdA=-1;
int solverBodyIdB=-1;
if (manifold->getNumContacts())
{
solverBodyIdA = getOrInitSolverBody(*colObj0);
solverBodyIdB = getOrInitSolverBody(*colObj1);
}
btRigidBody* solverBodyA = btRigidBody::upcast(colObj0);
btRigidBody* solverBodyB = btRigidBody::upcast(colObj1);
///avoid collision response between two static objects
if (!solverBodyIdA && !solverBodyIdB)
if (!solverBodyA && !solverBodyB)
return;
btVector3 rel_pos1;
@@ -490,12 +490,12 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
int frictionIndex = m_tmpSolverContactConstraintPool.size();
{
btSolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expand();
btSolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expandNonInitializing();
btRigidBody* rb0 = btRigidBody::upcast(colObj0);
btRigidBody* rb1 = btRigidBody::upcast(colObj1);
solverConstraint.m_solverBodyIdA = solverBodyIdA;
solverConstraint.m_solverBodyIdB = solverBodyIdB;
solverConstraint.m_solverBodyA = rb0? rb0 : &getFixedBody();
solverConstraint.m_solverBodyB = rb1? rb1 : &getFixedBody();
solverConstraint.m_originalContactPoint = &cp;
@@ -564,9 +564,9 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
{
solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
if (rb0)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA].applyImpulse(solverConstraint.m_contactNormal*rb0->getInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
rb0->internalApplyImpulse(solverConstraint.m_contactNormal*rb0->getInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
if (rb1)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(solverConstraint.m_contactNormal*rb1->getInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-solverConstraint.m_appliedImpulse);
rb1->internalApplyImpulse(solverConstraint.m_contactNormal*rb1->getInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-solverConstraint.m_appliedImpulse);
} else
{
solverConstraint.m_appliedImpulse = 0.f;
@@ -625,12 +625,12 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
cp.m_lateralFrictionDir2.normalize();//??
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2);
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2);
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
}
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1);
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1);
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
cp.m_lateralFrictionInitialized = true;
} else
{
@@ -640,21 +640,21 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
{
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2);
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2);
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
}
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1);
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1);
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
cp.m_lateralFrictionInitialized = true;
}
} else
{
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation,cp.m_contactMotion1, cp.m_contactCFM1);
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation,cp.m_contactMotion1, cp.m_contactCFM1);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, cp.m_contactMotion2, cp.m_contactCFM2);
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, cp.m_contactMotion2, cp.m_contactCFM2);
}
if (infoGlobal.m_solverMode & SOLVER_USE_FRICTION_WARMSTARTING)
@@ -665,9 +665,9 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
{
frictionConstraint1.m_appliedImpulse = cp.m_appliedImpulseLateral1 * infoGlobal.m_warmstartingFactor;
if (rb0)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA].applyImpulse(frictionConstraint1.m_contactNormal*rb0->getInvMass()*rb0->getLinearFactor(),frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse);
rb0->internalApplyImpulse(frictionConstraint1.m_contactNormal*rb0->getInvMass()*rb0->getLinearFactor(),frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse);
if (rb1)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(frictionConstraint1.m_contactNormal*rb1->getInvMass()*rb1->getLinearFactor(),-frictionConstraint1.m_angularComponentB,-frictionConstraint1.m_appliedImpulse);
rb1->internalApplyImpulse(frictionConstraint1.m_contactNormal*rb1->getInvMass()*rb1->getLinearFactor(),-frictionConstraint1.m_angularComponentB,-frictionConstraint1.m_appliedImpulse);
} else
{
frictionConstraint1.m_appliedImpulse = 0.f;
@@ -681,9 +681,9 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
{
frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2 * infoGlobal.m_warmstartingFactor;
if (rb0)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA].applyImpulse(frictionConstraint2.m_contactNormal*rb0->getInvMass(),frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse);
rb0->internalApplyImpulse(frictionConstraint2.m_contactNormal*rb0->getInvMass(),frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse);
if (rb1)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(frictionConstraint2.m_contactNormal*rb1->getInvMass(),-frictionConstraint2.m_angularComponentB,-frictionConstraint2.m_appliedImpulse);
rb1->internalApplyImpulse(frictionConstraint2.m_contactNormal*rb1->getInvMass(),-frictionConstraint2.m_angularComponentB,-frictionConstraint2.m_appliedImpulse);
} else
{
frictionConstraint2.m_appliedImpulse = 0.f;
@@ -730,10 +730,6 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
constraint->buildJacobian();
}
}
btSolverBody& fixedBody = m_tmpSolverBodyPool.expand();
initSolverBody(&fixedBody,0);
//btRigidBody* rb0=0,*rb1=0;
//if (1)
@@ -773,12 +769,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
btRigidBody& rbA = constraint->getRigidBodyA();
btRigidBody& rbB = constraint->getRigidBodyB();
int solverBodyIdA = getOrInitSolverBody(rbA);
int solverBodyIdB = getOrInitSolverBody(rbB);
btSolverBody* bodyAPtr = &m_tmpSolverBodyPool[solverBodyIdA];
btSolverBody* bodyBPtr = &m_tmpSolverBodyPool[solverBodyIdB];
int j;
for ( j=0;j<info1.m_numConstraintRows;j++)
{
@@ -787,14 +778,14 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
currentConstraintRow[j].m_upperLimit = FLT_MAX;
currentConstraintRow[j].m_appliedImpulse = 0.f;
currentConstraintRow[j].m_appliedPushImpulse = 0.f;
currentConstraintRow[j].m_solverBodyIdA = solverBodyIdA;
currentConstraintRow[j].m_solverBodyIdB = solverBodyIdB;
currentConstraintRow[j].m_solverBodyA = &rbA;
currentConstraintRow[j].m_solverBodyB = &rbB;
}
bodyAPtr->m_deltaLinearVelocity.setValue(0.f,0.f,0.f);
bodyAPtr->m_deltaAngularVelocity.setValue(0.f,0.f,0.f);
bodyBPtr->m_deltaLinearVelocity.setValue(0.f,0.f,0.f);
bodyBPtr->m_deltaAngularVelocity.setValue(0.f,0.f,0.f);
rbA.internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
rbA.internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
rbB.internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
rbB.internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
@@ -949,16 +940,12 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(
for (j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
{
btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[j];
resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
resolveSingleConstraintRowGenericSIMD(*constraint.m_solverBodyA,*constraint.m_solverBodyB,constraint);
}
for (j=0;j<numConstraints;j++)
{
int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA());
int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB());
btSolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
btSolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
constraints[j]->solveConstraintObsolete(constraints[j]->getRigidBodyA(),constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
}
///solve all contact constraints using SIMD, if available
@@ -966,7 +953,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
resolveSingleConstraintRowLowerLimitSIMD(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
///solve all friction constraints, using SIMD, if available
@@ -981,7 +968,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
resolveSingleConstraintRowGenericSIMD(*solveManifold.m_solverBodyA, *solveManifold.m_solverBodyB,solveManifold);
}
}
} else
@@ -991,25 +978,19 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(
for (j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
{
btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[j];
resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
resolveSingleConstraintRowGeneric(*constraint.m_solverBodyA,*constraint.m_solverBodyB,constraint);
}
for (j=0;j<numConstraints;j++)
{
int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA());
int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB());
btSolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
btSolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
constraints[j]->solveConstraintObsolete(constraints[j]->getRigidBodyA(),constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
}
///solve all contact constraints
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
resolveSingleConstraintRowLowerLimit(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
///solve all friction constraints
int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
@@ -1023,50 +1004,48 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
resolveSingleConstraintRowGeneric(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
}
}
}
if (infoGlobal.m_splitImpulse)
if (infoGlobal.m_splitImpulse)
{
if (infoGlobal.m_solverMode & SOLVER_SIMD)
{
if (infoGlobal.m_solverMode & SOLVER_SIMD)
for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
{
for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
for (j=0;j<numPoolConstraints;j++)
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSplitPenetrationSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],
m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
}
}
}
}
else
{
for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
{
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSplitPenetrationImpulseCacheFriendly(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],
m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
}
resolveSplitPenetrationSIMD(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
}
}
}
else
{
for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
{
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSplitPenetrationImpulseCacheFriendly(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
}
}
}
}
}
return 0.f;
@@ -1123,20 +1102,23 @@ btScalar btSequentialImpulseConstraintSolver::solveGroup(btCollisionObject** bod
if (infoGlobal.m_splitImpulse)
{
for ( i=0;i<m_tmpSolverBodyPool.size();i++)
for ( i=0;i<numBodies;i++)
{
m_tmpSolverBodyPool[i].writebackVelocity(infoGlobal.m_timeStep);
btRigidBody* body = btRigidBody::upcast(bodies[i]);
if (body)
body->internalWritebackVelocity(infoGlobal.m_timeStep);
}
} else
{
for ( i=0;i<m_tmpSolverBodyPool.size();i++)
for ( i=0;i<numBodies;i++)
{
m_tmpSolverBodyPool[i].writebackVelocity();
btRigidBody* body = btRigidBody::upcast(bodies[i]);
if (body)
body->internalWritebackVelocity();
}
}
m_tmpSolverBodyPool.resize(0);
m_tmpSolverContactConstraintPool.resize(0);
m_tmpSolverNonContactConstraintPool.resize(0);
m_tmpSolverContactFrictionConstraintPool.resize(0);