@@ -332,6 +332,48 @@ public:
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void applyPushImpulse(const btVector3& impulse, const btVector3& rel_pos)
|
||||
{
|
||||
if (m_inverseMass != btScalar(0.))
|
||||
{
|
||||
applyCentralPushImpulse(impulse);
|
||||
if (m_angularFactor)
|
||||
{
|
||||
applyTorqueTurnImpulse(rel_pos.cross(impulse * m_linearFactor));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
btVector3 getPushVelocity()
|
||||
{
|
||||
return m_pushVelocity;
|
||||
}
|
||||
|
||||
btVector3 getTurnVelocity()
|
||||
{
|
||||
return m_turnVelocity;
|
||||
}
|
||||
|
||||
void setPushVelocity(const btVector3& v)
|
||||
{
|
||||
m_pushVelocity = v;
|
||||
}
|
||||
|
||||
void setTurnVelocity(const btVector3& v)
|
||||
{
|
||||
m_turnVelocity = v;
|
||||
}
|
||||
|
||||
void applyCentralPushImpulse(const btVector3& impulse)
|
||||
{
|
||||
m_pushVelocity += impulse * m_linearFactor * m_inverseMass;
|
||||
}
|
||||
|
||||
void applyTorqueTurnImpulse(const btVector3& torque)
|
||||
{
|
||||
m_turnVelocity += m_invInertiaTensorWorld * torque * m_angularFactor;
|
||||
}
|
||||
|
||||
void clearForces()
|
||||
{
|
||||
|
||||
@@ -47,6 +47,7 @@ SET(BulletSoftBody_HDRS
|
||||
btDeformableMassSpringForce.h
|
||||
btDeformableCorotatedForce.h
|
||||
btDeformableNeoHookeanForce.h
|
||||
btDeformableLinearElasticityForce.h
|
||||
btDeformableLagrangianForce.h
|
||||
btPreconditioner.h
|
||||
|
||||
|
||||
@@ -20,6 +20,7 @@
|
||||
#include "btDeformableMassSpringForce.h"
|
||||
#include "btDeformableGravityForce.h"
|
||||
#include "btDeformableCorotatedForce.h"
|
||||
#include "btDeformableLinearElasticityForce.h"
|
||||
#include "btDeformableNeoHookeanForce.h"
|
||||
#include "btDeformableContactProjection.h"
|
||||
#include "btPreconditioner.h"
|
||||
|
||||
@@ -36,7 +36,7 @@ btDeformableBodySolver::~btDeformableBodySolver()
|
||||
|
||||
void btDeformableBodySolver::solveDeformableConstraints(btScalar solverdt)
|
||||
{
|
||||
BT_PROFILE("solveConstraints");
|
||||
BT_PROFILE("solveDeformableConstraints");
|
||||
if (!m_implicit)
|
||||
{
|
||||
m_objective->computeResidual(solverdt, m_residual);
|
||||
@@ -241,6 +241,16 @@ btScalar btDeformableBodySolver::solveContactConstraints()
|
||||
return maxSquaredResidual;
|
||||
}
|
||||
|
||||
btScalar btDeformableBodySolver::solveSplitImpulse(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
BT_PROFILE("solveSplitImpulse");
|
||||
return m_objective->m_projection.solveSplitImpulse(infoGlobal);
|
||||
}
|
||||
|
||||
void btDeformableBodySolver::splitImpulseSetup(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
m_objective->m_projection.splitImpulseSetup(infoGlobal);
|
||||
}
|
||||
|
||||
void btDeformableBodySolver::updateVelocity()
|
||||
{
|
||||
@@ -324,7 +334,7 @@ void btDeformableBodySolver::setupDeformableSolve(bool implicit)
|
||||
}
|
||||
else
|
||||
m_dv[counter] = psb->m_nodes[j].m_v - m_backupVelocity[counter];
|
||||
psb->m_nodes[j].m_v = m_backupVelocity[counter];
|
||||
psb->m_nodes[j].m_v = m_backupVelocity[counter] + psb->m_nodes[j].m_vsplit;
|
||||
++counter;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -66,6 +66,12 @@ public:
|
||||
|
||||
// solve the contact between deformable and rigid as well as among deformables
|
||||
btScalar solveContactConstraints();
|
||||
|
||||
// solve the position error between deformable and rigid as well as among deformables;
|
||||
btScalar solveSplitImpulse(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
// set up the position error in split impulse
|
||||
void splitImpulseSetup(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
// resize/clear data structures
|
||||
void reinitialize(const btAlignedObjectArray<btSoftBody *>& softBodies, btScalar dt);
|
||||
|
||||
@@ -140,11 +140,14 @@ btDeformableRigidContactConstraint::btDeformableRigidContactConstraint(const btS
|
||||
{
|
||||
m_total_normal_dv.setZero();
|
||||
m_total_tangent_dv.setZero();
|
||||
// penetration is non-positive. The magnitude of penetration is the depth of penetration.
|
||||
m_penetration = btMin(btScalar(0), c.m_cti.m_offset);
|
||||
}
|
||||
|
||||
btDeformableRigidContactConstraint::btDeformableRigidContactConstraint(const btDeformableRigidContactConstraint& other)
|
||||
: m_contact(other.m_contact)
|
||||
, btDeformableContactConstraint(other)
|
||||
, m_penetration(other.m_penetration)
|
||||
{
|
||||
m_total_normal_dv = other.m_total_normal_dv;
|
||||
m_total_tangent_dv = other.m_total_tangent_dv;
|
||||
@@ -285,6 +288,36 @@ btScalar btDeformableRigidContactConstraint::solveConstraint()
|
||||
return residualSquare;
|
||||
}
|
||||
|
||||
btScalar btDeformableRigidContactConstraint::solveSplitImpulse(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
const btSoftBody::sCti& cti = m_contact->m_cti;
|
||||
const btScalar dn = m_penetration;
|
||||
if (dn != 0)
|
||||
{
|
||||
const btVector3 impulse = (m_contact->m_c0 * (cti.m_normal * dn / infoGlobal.m_timeStep));
|
||||
// one iteration of the position impulse corrects all the position error at this timestep
|
||||
m_penetration -= dn;
|
||||
// apply impulse to deformable nodes involved and change their position
|
||||
applySplitImpulse(impulse);
|
||||
// apply impulse to the rigid/multibodies involved and change their position
|
||||
if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
|
||||
{
|
||||
btRigidBody* rigidCol = 0;
|
||||
rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
|
||||
if (rigidCol)
|
||||
{
|
||||
rigidCol->applyPushImpulse(impulse, m_contact->m_c1);
|
||||
}
|
||||
}
|
||||
else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
|
||||
{
|
||||
// todo xuchenhan@
|
||||
}
|
||||
return (m_penetration/infoGlobal.m_timeStep) * (m_penetration/infoGlobal.m_timeStep);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* ================ Node vs. Rigid =================== */
|
||||
btDeformableNodeRigidContactConstraint::btDeformableNodeRigidContactConstraint(const btSoftBody::DeformableNodeRigidContact& contact)
|
||||
: m_node(contact.m_node)
|
||||
@@ -316,6 +349,13 @@ void btDeformableNodeRigidContactConstraint::applyImpulse(const btVector3& impul
|
||||
contact->m_node->m_v -= dv;
|
||||
}
|
||||
|
||||
void btDeformableNodeRigidContactConstraint::applySplitImpulse(const btVector3& impulse)
|
||||
{
|
||||
const btSoftBody::DeformableNodeRigidContact* contact = getContact();
|
||||
btVector3 dv = impulse * contact->m_c2;
|
||||
contact->m_node->m_vsplit -= dv;
|
||||
};
|
||||
|
||||
/* ================ Face vs. Rigid =================== */
|
||||
btDeformableFaceRigidContactConstraint::btDeformableFaceRigidContactConstraint(const btSoftBody::DeformableFaceRigidContact& contact)
|
||||
: m_face(contact.m_face)
|
||||
@@ -386,6 +426,26 @@ void btDeformableFaceRigidContactConstraint::applyImpulse(const btVector3& impul
|
||||
v2 += dv2;
|
||||
}
|
||||
|
||||
void btDeformableFaceRigidContactConstraint::applySplitImpulse(const btVector3& impulse)
|
||||
{
|
||||
const btSoftBody::DeformableFaceRigidContact* contact = getContact();
|
||||
btVector3 dv = impulse * contact->m_c2;
|
||||
btSoftBody::Face* face = contact->m_face;
|
||||
|
||||
btVector3& v0 = face->m_n[0]->m_vsplit;
|
||||
btVector3& v1 = face->m_n[1]->m_vsplit;
|
||||
btVector3& v2 = face->m_n[2]->m_vsplit;
|
||||
const btScalar& im0 = face->m_n[0]->m_im;
|
||||
const btScalar& im1 = face->m_n[1]->m_im;
|
||||
const btScalar& im2 = face->m_n[2]->m_im;
|
||||
if (im0 > 0)
|
||||
v0 -= dv * contact->m_weights[0];
|
||||
if (im1 > 0)
|
||||
v1 -= dv * contact->m_weights[1];
|
||||
if (im2 > 0)
|
||||
v2 -= dv * contact->m_weights[2];
|
||||
}
|
||||
|
||||
/* ================ Face vs. Node =================== */
|
||||
btDeformableFaceNodeContactConstraint::btDeformableFaceNodeContactConstraint(const btSoftBody::DeformableFaceNodeContact& contact)
|
||||
: m_node(contact.m_node)
|
||||
|
||||
@@ -50,6 +50,9 @@ public:
|
||||
// the constraint is solved by calculating the impulse between object A and B in the contact and apply the impulse to both objects involved in the contact
|
||||
virtual btScalar solveConstraint() = 0;
|
||||
|
||||
// solve the position error by applying an inelastic impulse that changes only the position (not velocity)
|
||||
virtual btScalar solveSplitImpulse(const btContactSolverInfo& infoGlobal) = 0;
|
||||
|
||||
// get the velocity of the object A in the contact
|
||||
virtual btVector3 getVa() const = 0;
|
||||
|
||||
@@ -61,6 +64,12 @@ public:
|
||||
|
||||
// apply impulse to the soft body node and/or face involved
|
||||
virtual void applyImpulse(const btVector3& impulse) = 0;
|
||||
|
||||
// apply position based impulse to the soft body node and/or face involved
|
||||
virtual void applySplitImpulse(const btVector3& impulse) = 0;
|
||||
|
||||
// scale the penetration depth by erp
|
||||
virtual void setPenetrationScale(btScalar scale) = 0;
|
||||
};
|
||||
|
||||
//
|
||||
@@ -90,6 +99,11 @@ public:
|
||||
return 0;
|
||||
}
|
||||
|
||||
virtual btScalar solveSplitImpulse(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
virtual btVector3 getVa() const
|
||||
{
|
||||
return btVector3(0,0,0);
|
||||
@@ -106,6 +120,8 @@ public:
|
||||
}
|
||||
|
||||
virtual void applyImpulse(const btVector3& impulse){}
|
||||
virtual void applySplitImpulse(const btVector3& impulse){}
|
||||
virtual void setPenetrationScale(btScalar scale){}
|
||||
};
|
||||
|
||||
//
|
||||
@@ -122,6 +138,11 @@ public:
|
||||
{
|
||||
}
|
||||
virtual btScalar solveConstraint();
|
||||
virtual btScalar solveSplitImpulse(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
// todo xuchenhan@
|
||||
return 0;
|
||||
}
|
||||
// object A is the rigid/multi body, and object B is the deformable node/face
|
||||
virtual btVector3 getVa() const;
|
||||
// get the velocity of the deformable node in contact
|
||||
@@ -131,6 +152,11 @@ public:
|
||||
return btVector3(0,0,0);
|
||||
}
|
||||
virtual void applyImpulse(const btVector3& impulse);
|
||||
virtual void applySplitImpulse(const btVector3& impulse)
|
||||
{
|
||||
// todo xuchenhan@
|
||||
};
|
||||
virtual void setPenetrationScale(btScalar scale){}
|
||||
};
|
||||
|
||||
|
||||
@@ -141,6 +167,7 @@ class btDeformableRigidContactConstraint : public btDeformableContactConstraint
|
||||
public:
|
||||
btVector3 m_total_normal_dv;
|
||||
btVector3 m_total_tangent_dv;
|
||||
btScalar m_penetration;
|
||||
const btSoftBody::DeformableRigidContact* m_contact;
|
||||
|
||||
btDeformableRigidContactConstraint(){}
|
||||
@@ -154,6 +181,13 @@ public:
|
||||
virtual btVector3 getVa() const;
|
||||
|
||||
virtual btScalar solveConstraint();
|
||||
|
||||
virtual btScalar solveSplitImpulse(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
virtual void setPenetrationScale(btScalar scale)
|
||||
{
|
||||
m_penetration *= scale;
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
@@ -185,6 +219,7 @@ public:
|
||||
}
|
||||
|
||||
virtual void applyImpulse(const btVector3& impulse);
|
||||
virtual void applySplitImpulse(const btVector3& impulse);
|
||||
};
|
||||
|
||||
//
|
||||
@@ -214,6 +249,7 @@ public:
|
||||
}
|
||||
|
||||
virtual void applyImpulse(const btVector3& impulse);
|
||||
virtual void applySplitImpulse(const btVector3& impulse);
|
||||
};
|
||||
|
||||
//
|
||||
@@ -235,6 +271,12 @@ public:
|
||||
|
||||
virtual btScalar solveConstraint();
|
||||
|
||||
virtual btScalar solveSplitImpulse(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
// todo: xuchenhan@
|
||||
return 0;
|
||||
}
|
||||
|
||||
// get the velocity of the object A in the contact
|
||||
virtual btVector3 getVa() const;
|
||||
|
||||
@@ -251,5 +293,10 @@ public:
|
||||
}
|
||||
|
||||
virtual void applyImpulse(const btVector3& impulse);
|
||||
virtual void applySplitImpulse(const btVector3& impulse)
|
||||
{
|
||||
// todo xuchenhan@
|
||||
}
|
||||
virtual void setPenetrationScale(btScalar scale){}
|
||||
};
|
||||
#endif /* BT_DEFORMABLE_CONTACT_CONSTRAINT_H */
|
||||
|
||||
@@ -51,6 +51,57 @@ btScalar btDeformableContactProjection::update()
|
||||
return residualSquare;
|
||||
}
|
||||
|
||||
void btDeformableContactProjection::splitImpulseSetup(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
// node constraints
|
||||
for (int index = 0; index < m_nodeRigidConstraints.size(); ++index)
|
||||
{
|
||||
btAlignedObjectArray<btDeformableNodeRigidContactConstraint>& constraints = *m_nodeRigidConstraints.getAtIndex(index);
|
||||
for (int i = 0; i < constraints.size(); ++i)
|
||||
{
|
||||
constraints[i].setPenetrationScale(infoGlobal.m_erp);
|
||||
}
|
||||
}
|
||||
|
||||
// face constraints
|
||||
for (int index = 0; index < m_allFaceConstraints.size(); ++index)
|
||||
{
|
||||
btDeformableContactConstraint* constraint = m_allFaceConstraints[index];
|
||||
constraint->setPenetrationScale(infoGlobal.m_erp);
|
||||
}
|
||||
}
|
||||
|
||||
btScalar btDeformableContactProjection::solveSplitImpulse(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
btScalar residualSquare = 0;
|
||||
// node constraints
|
||||
for (int index = 0; index < m_nodeRigidConstraints.size(); ++index)
|
||||
{
|
||||
btAlignedObjectArray<btDeformableNodeRigidContactConstraint>& constraints = *m_nodeRigidConstraints.getAtIndex(index);
|
||||
for (int i = 0; i < constraints.size(); ++i)
|
||||
{
|
||||
btScalar localResidualSquare = constraints[i].solveSplitImpulse(infoGlobal);
|
||||
residualSquare = btMax(residualSquare, localResidualSquare);
|
||||
}
|
||||
}
|
||||
|
||||
// anchor constraints
|
||||
for (int index = 0; index < m_nodeAnchorConstraints.size(); ++index)
|
||||
{
|
||||
btDeformableNodeAnchorConstraint& constraint = *m_nodeAnchorConstraints.getAtIndex(index);
|
||||
btScalar localResidualSquare = constraint.solveSplitImpulse(infoGlobal);
|
||||
residualSquare = btMax(residualSquare, localResidualSquare);
|
||||
}
|
||||
|
||||
// face constraints
|
||||
for (int index = 0; index < m_allFaceConstraints.size(); ++index)
|
||||
{
|
||||
btDeformableContactConstraint* constraint = m_allFaceConstraints[index];
|
||||
btScalar localResidualSquare = constraint->solveSplitImpulse(infoGlobal);
|
||||
residualSquare = btMax(residualSquare, localResidualSquare);
|
||||
}
|
||||
return residualSquare;
|
||||
}
|
||||
|
||||
void btDeformableContactProjection::setConstraints()
|
||||
{
|
||||
|
||||
@@ -60,9 +60,12 @@ public:
|
||||
// add friction force to the rhs of the linear solve
|
||||
virtual void applyDynamicFriction(TVStack& f);
|
||||
|
||||
// update the constraints
|
||||
// update and solve the constraints
|
||||
virtual btScalar update();
|
||||
|
||||
// solve the position error using split impulse
|
||||
virtual btScalar solveSplitImpulse(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
// Add constraints to m_constraints. In addition, the constraints that each vertex own are recorded in m_constraintsDict.
|
||||
virtual void setConstraints();
|
||||
|
||||
@@ -70,5 +73,7 @@ public:
|
||||
virtual void setProjection();
|
||||
|
||||
virtual void reinitialize(bool nodeUpdated);
|
||||
|
||||
virtual void splitImpulseSetup(const btContactSolverInfo& infoGlobal);
|
||||
};
|
||||
#endif /* btDeformableContactProjection_h */
|
||||
|
||||
@@ -25,7 +25,8 @@ enum btDeformableLagrangianForceType
|
||||
BT_GRAVITY_FORCE = 1,
|
||||
BT_MASSSPRING_FORCE = 2,
|
||||
BT_COROTATED_FORCE = 3,
|
||||
BT_NEOHOOKEAN_FORCE = 4
|
||||
BT_NEOHOOKEAN_FORCE = 4,
|
||||
BT_LINEAR_ELASTICITY_FORCE = 5
|
||||
};
|
||||
|
||||
static inline double randomDouble(double low, double high)
|
||||
|
||||
340
src/BulletSoftBody/btDeformableLinearElasticityForce.h
Normal file
340
src/BulletSoftBody/btDeformableLinearElasticityForce.h
Normal file
@@ -0,0 +1,340 @@
|
||||
/*
|
||||
Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
|
||||
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2019 Google Inc. http://bulletphysics.org
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef BT_LINEAR_ELASTICITY_H
|
||||
#define BT_LINEAR_ELASTICITY_H
|
||||
|
||||
#include "btDeformableLagrangianForce.h"
|
||||
#include "LinearMath/btQuickprof.h"
|
||||
class btDeformableLinearElasticityForce : public btDeformableLagrangianForce
|
||||
{
|
||||
public:
|
||||
typedef btAlignedObjectArray<btVector3> TVStack;
|
||||
btScalar m_mu, m_lambda;
|
||||
btScalar m_mu_damp, m_lambda_damp;
|
||||
btDeformableLinearElasticityForce(): m_mu(1), m_lambda(1)
|
||||
{
|
||||
btScalar damping = 0.05;
|
||||
m_mu_damp = damping * m_mu;
|
||||
m_lambda_damp = damping * m_lambda;
|
||||
}
|
||||
|
||||
btDeformableLinearElasticityForce(btScalar mu, btScalar lambda, btScalar damping = 0.05): m_mu(mu), m_lambda(lambda)
|
||||
{
|
||||
m_mu_damp = damping * m_mu;
|
||||
m_lambda_damp = damping * m_lambda;
|
||||
}
|
||||
|
||||
virtual void addScaledForces(btScalar scale, TVStack& force)
|
||||
{
|
||||
addScaledDampingForce(scale, force);
|
||||
addScaledElasticForce(scale, force);
|
||||
}
|
||||
|
||||
virtual void addScaledExplicitForce(btScalar scale, TVStack& force)
|
||||
{
|
||||
addScaledElasticForce(scale, force);
|
||||
}
|
||||
|
||||
// The damping matrix is calculated using the time n state as described in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
|
||||
virtual void addScaledDampingForce(btScalar scale, TVStack& force)
|
||||
{
|
||||
if (m_mu_damp == 0 && m_lambda_damp == 0)
|
||||
return;
|
||||
int numNodes = getNumNodes();
|
||||
btAssert(numNodes <= force.size());
|
||||
btVector3 grad_N_hat_1st_col = btVector3(-1,-1,-1);
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (!psb->isActive())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
for (int j = 0; j < psb->m_tetras.size(); ++j)
|
||||
{
|
||||
btSoftBody::Tetra& tetra = psb->m_tetras[j];
|
||||
btSoftBody::Node* node0 = tetra.m_n[0];
|
||||
btSoftBody::Node* node1 = tetra.m_n[1];
|
||||
btSoftBody::Node* node2 = tetra.m_n[2];
|
||||
btSoftBody::Node* node3 = tetra.m_n[3];
|
||||
size_t id0 = node0->index;
|
||||
size_t id1 = node1->index;
|
||||
size_t id2 = node2->index;
|
||||
size_t id3 = node3->index;
|
||||
btMatrix3x3 dF = DsFromVelocity(node0, node1, node2, node3) * tetra.m_Dm_inverse;
|
||||
btMatrix3x3 I;
|
||||
I.setIdentity();
|
||||
btMatrix3x3 dP = (dF + dF.transpose()) * m_mu_damp + I * (dF[0][0]+dF[1][1]+dF[2][2]) * m_lambda_damp;
|
||||
// firstPiolaDampingDifferential(psb->m_tetraScratchesTn[j], dF, dP);
|
||||
btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
|
||||
btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
|
||||
|
||||
// damping force differential
|
||||
btScalar scale1 = scale * tetra.m_element_measure;
|
||||
force[id0] -= scale1 * df_on_node0;
|
||||
force[id1] -= scale1 * df_on_node123.getColumn(0);
|
||||
force[id2] -= scale1 * df_on_node123.getColumn(1);
|
||||
force[id3] -= scale1 * df_on_node123.getColumn(2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
virtual double totalElasticEnergy(btScalar dt)
|
||||
{
|
||||
double energy = 0;
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (!psb->isActive())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
for (int j = 0; j < psb->m_tetraScratches.size(); ++j)
|
||||
{
|
||||
btSoftBody::Tetra& tetra = psb->m_tetras[j];
|
||||
btSoftBody::TetraScratch& s = psb->m_tetraScratches[j];
|
||||
energy += tetra.m_element_measure * elasticEnergyDensity(s);
|
||||
}
|
||||
}
|
||||
return energy;
|
||||
}
|
||||
|
||||
// The damping energy is formulated as in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
|
||||
virtual double totalDampingEnergy(btScalar dt)
|
||||
{
|
||||
double energy = 0;
|
||||
int sz = 0;
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (!psb->isActive())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
for (int j = 0; j < psb->m_nodes.size(); ++j)
|
||||
{
|
||||
sz = btMax(sz, psb->m_nodes[j].index);
|
||||
}
|
||||
}
|
||||
TVStack dampingForce;
|
||||
dampingForce.resize(sz+1);
|
||||
for (int i = 0; i < dampingForce.size(); ++i)
|
||||
dampingForce[i].setZero();
|
||||
addScaledDampingForce(0.5, dampingForce);
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
for (int j = 0; j < psb->m_nodes.size(); ++j)
|
||||
{
|
||||
const btSoftBody::Node& node = psb->m_nodes[j];
|
||||
energy -= dampingForce[node.index].dot(node.m_v) / dt;
|
||||
}
|
||||
}
|
||||
return energy;
|
||||
}
|
||||
|
||||
double elasticEnergyDensity(const btSoftBody::TetraScratch& s)
|
||||
{
|
||||
double density = 0;
|
||||
btMatrix3x3 epsilon = (s.m_F + s.m_F.transpose()) * 0.5 - btMatrix3x3::getIdentity();
|
||||
btScalar trace = epsilon[0][0] + epsilon[1][1] + epsilon[2][2];
|
||||
density += m_mu * (epsilon[0].length2() + epsilon[1].length2() + epsilon[2].length2());
|
||||
density += m_lambda * trace * trace * 0.5;
|
||||
return density;
|
||||
}
|
||||
|
||||
virtual void addScaledElasticForce(btScalar scale, TVStack& force)
|
||||
{
|
||||
int numNodes = getNumNodes();
|
||||
btAssert(numNodes <= force.size());
|
||||
btVector3 grad_N_hat_1st_col = btVector3(-1,-1,-1);
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (!psb->isActive())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
btScalar max_p = psb->m_cfg.m_maxStress;
|
||||
for (int j = 0; j < psb->m_tetras.size(); ++j)
|
||||
{
|
||||
btSoftBody::Tetra& tetra = psb->m_tetras[j];
|
||||
btMatrix3x3 P;
|
||||
firstPiola(psb->m_tetraScratches[j],P);
|
||||
#if USE_SVD
|
||||
if (max_p > 0)
|
||||
{
|
||||
// since we want to clamp the principal stress to max_p, we only need to
|
||||
// calculate SVD when sigma_0^2 + sigma_1^2 + sigma_2^2 > max_p * max_p
|
||||
btScalar trPTP = (P[0].length2() + P[1].length2() + P[2].length2());
|
||||
if (trPTP > max_p * max_p)
|
||||
{
|
||||
btMatrix3x3 U, V;
|
||||
btVector3 sigma;
|
||||
singularValueDecomposition(P, U, sigma, V);
|
||||
sigma[0] = btMin(sigma[0], max_p);
|
||||
sigma[1] = btMin(sigma[1], max_p);
|
||||
sigma[2] = btMin(sigma[2], max_p);
|
||||
sigma[0] = btMax(sigma[0], -max_p);
|
||||
sigma[1] = btMax(sigma[1], -max_p);
|
||||
sigma[2] = btMax(sigma[2], -max_p);
|
||||
btMatrix3x3 Sigma;
|
||||
Sigma.setIdentity();
|
||||
Sigma[0][0] = sigma[0];
|
||||
Sigma[1][1] = sigma[1];
|
||||
Sigma[2][2] = sigma[2];
|
||||
P = U * Sigma * V.transpose();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
// btVector3 force_on_node0 = P * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
|
||||
btMatrix3x3 force_on_node123 = P * tetra.m_Dm_inverse.transpose();
|
||||
btVector3 force_on_node0 = force_on_node123 * grad_N_hat_1st_col;
|
||||
|
||||
btSoftBody::Node* node0 = tetra.m_n[0];
|
||||
btSoftBody::Node* node1 = tetra.m_n[1];
|
||||
btSoftBody::Node* node2 = tetra.m_n[2];
|
||||
btSoftBody::Node* node3 = tetra.m_n[3];
|
||||
size_t id0 = node0->index;
|
||||
size_t id1 = node1->index;
|
||||
size_t id2 = node2->index;
|
||||
size_t id3 = node3->index;
|
||||
|
||||
// elastic force
|
||||
btScalar scale1 = scale * tetra.m_element_measure;
|
||||
force[id0] -= scale1 * force_on_node0;
|
||||
force[id1] -= scale1 * force_on_node123.getColumn(0);
|
||||
force[id2] -= scale1 * force_on_node123.getColumn(1);
|
||||
force[id3] -= scale1 * force_on_node123.getColumn(2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The damping matrix is calculated using the time n state as described in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
|
||||
virtual void addScaledDampingForceDifferential(btScalar scale, const TVStack& dv, TVStack& df)
|
||||
{
|
||||
if (m_mu_damp == 0 && m_lambda_damp == 0)
|
||||
return;
|
||||
int numNodes = getNumNodes();
|
||||
btAssert(numNodes <= df.size());
|
||||
btVector3 grad_N_hat_1st_col = btVector3(-1,-1,-1);
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (!psb->isActive())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
for (int j = 0; j < psb->m_tetras.size(); ++j)
|
||||
{
|
||||
btSoftBody::Tetra& tetra = psb->m_tetras[j];
|
||||
btSoftBody::Node* node0 = tetra.m_n[0];
|
||||
btSoftBody::Node* node1 = tetra.m_n[1];
|
||||
btSoftBody::Node* node2 = tetra.m_n[2];
|
||||
btSoftBody::Node* node3 = tetra.m_n[3];
|
||||
size_t id0 = node0->index;
|
||||
size_t id1 = node1->index;
|
||||
size_t id2 = node2->index;
|
||||
size_t id3 = node3->index;
|
||||
btMatrix3x3 dF = Ds(id0, id1, id2, id3, dv) * tetra.m_Dm_inverse;
|
||||
btMatrix3x3 I;
|
||||
I.setIdentity();
|
||||
btMatrix3x3 dP = (dF + dF.transpose()) * m_mu_damp + I * (dF[0][0]+dF[1][1]+dF[2][2]) * m_lambda_damp;
|
||||
// firstPiolaDampingDifferential(psb->m_tetraScratchesTn[j], dF, dP);
|
||||
// btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
|
||||
btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
|
||||
btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col;
|
||||
|
||||
// damping force differential
|
||||
btScalar scale1 = scale * tetra.m_element_measure;
|
||||
df[id0] -= scale1 * df_on_node0;
|
||||
df[id1] -= scale1 * df_on_node123.getColumn(0);
|
||||
df[id2] -= scale1 * df_on_node123.getColumn(1);
|
||||
df[id3] -= scale1 * df_on_node123.getColumn(2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
virtual void addScaledElasticForceDifferential(btScalar scale, const TVStack& dx, TVStack& df)
|
||||
{
|
||||
int numNodes = getNumNodes();
|
||||
btAssert(numNodes <= df.size());
|
||||
btVector3 grad_N_hat_1st_col = btVector3(-1,-1,-1);
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
btSoftBody* psb = m_softBodies[i];
|
||||
if (!psb->isActive())
|
||||
{
|
||||
continue;
|
||||
}
|
||||
for (int j = 0; j < psb->m_tetras.size(); ++j)
|
||||
{
|
||||
btSoftBody::Tetra& tetra = psb->m_tetras[j];
|
||||
btSoftBody::Node* node0 = tetra.m_n[0];
|
||||
btSoftBody::Node* node1 = tetra.m_n[1];
|
||||
btSoftBody::Node* node2 = tetra.m_n[2];
|
||||
btSoftBody::Node* node3 = tetra.m_n[3];
|
||||
size_t id0 = node0->index;
|
||||
size_t id1 = node1->index;
|
||||
size_t id2 = node2->index;
|
||||
size_t id3 = node3->index;
|
||||
btMatrix3x3 dF = Ds(id0, id1, id2, id3, dx) * tetra.m_Dm_inverse;
|
||||
btMatrix3x3 dP;
|
||||
firstPiolaDifferential(psb->m_tetraScratches[j], dF, dP);
|
||||
// btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
|
||||
btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
|
||||
btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col;
|
||||
|
||||
// elastic force differential
|
||||
btScalar scale1 = scale * tetra.m_element_measure;
|
||||
df[id0] -= scale1 * df_on_node0;
|
||||
df[id1] -= scale1 * df_on_node123.getColumn(0);
|
||||
df[id2] -= scale1 * df_on_node123.getColumn(1);
|
||||
df[id3] -= scale1 * df_on_node123.getColumn(2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void firstPiola(const btSoftBody::TetraScratch& s, btMatrix3x3& P)
|
||||
{
|
||||
btMatrix3x3 epsilon = (s.m_F + s.m_F.transpose()) * 0.5 - btMatrix3x3::getIdentity();
|
||||
btScalar trace = epsilon[0][0] + epsilon[1][1] + epsilon[2][2];
|
||||
P = epsilon * btScalar(2) * m_mu + btMatrix3x3::getIdentity() * m_lambda * trace;
|
||||
}
|
||||
|
||||
// Let P be the first piola stress.
|
||||
// This function calculates the dP = dP/dF * dF
|
||||
void firstPiolaDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP)
|
||||
{
|
||||
btScalar trace = (dF[0][0] + dF[1][1] + dF[2][2]);
|
||||
dP = (dF + dF.transpose()) * m_mu + btMatrix3x3::getIdentity() * m_lambda * trace;
|
||||
}
|
||||
|
||||
// Let Q be the damping stress.
|
||||
// This function calculates the dP = dQ/dF * dF
|
||||
void firstPiolaDampingDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP)
|
||||
{
|
||||
btScalar trace = (dF[0][0] + dF[1][1] + dF[2][2]);
|
||||
dP = (dF + dF.transpose()) * m_mu_damp + btMatrix3x3::getIdentity() * m_lambda_damp * trace;
|
||||
}
|
||||
|
||||
virtual btDeformableLagrangianForceType getForceType()
|
||||
{
|
||||
return BT_LINEAR_ELASTICITY_FORCE;
|
||||
}
|
||||
|
||||
};
|
||||
#endif /* BT_LINEAR_ELASTICITY_H */
|
||||
@@ -104,3 +104,40 @@ void btDeformableMultiBodyConstraintSolver::solverBodyWriteBack(const btContactS
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void btDeformableMultiBodyConstraintSolver::solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
|
||||
{
|
||||
BT_PROFILE("solveGroupCacheFriendlySplitImpulseIterations");
|
||||
int iteration;
|
||||
if (infoGlobal.m_splitImpulse)
|
||||
{
|
||||
{
|
||||
m_deformableSolver->splitImpulseSetup(infoGlobal);
|
||||
for (iteration = 0; iteration < infoGlobal.m_numIterations; iteration++)
|
||||
{
|
||||
btScalar leastSquaresResidual = 0.f;
|
||||
{
|
||||
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
|
||||
int j;
|
||||
for (j = 0; j < numPoolConstraints; j++)
|
||||
{
|
||||
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
|
||||
|
||||
btScalar residual = resolveSplitPenetrationImpulse(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
|
||||
leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
|
||||
}
|
||||
// solve the position correction between deformable and rigid/multibody
|
||||
btScalar residual = m_deformableSolver->solveSplitImpulse(infoGlobal);
|
||||
leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
|
||||
}
|
||||
if (leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || iteration >= (infoGlobal.m_numIterations - 1))
|
||||
{
|
||||
#ifdef VERBOSE_RESIDUAL_PRINTF
|
||||
printf("residual = %f at iteration #%d\n", leastSquaresResidual, iteration);
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -44,6 +44,8 @@ protected:
|
||||
// write the velocity of the underlying rigid body to the the the solver body
|
||||
void writeToSolverBody(btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal);
|
||||
|
||||
virtual void solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
|
||||
|
||||
public:
|
||||
BT_DECLARE_ALIGNED_ALLOCATOR();
|
||||
|
||||
|
||||
@@ -118,9 +118,32 @@ void btDeformableMultiBodyDynamicsWorld::softBodySelfCollision()
|
||||
}
|
||||
}
|
||||
|
||||
void btDeformableMultiBodyDynamicsWorld::positionCorrection(btScalar timeStep)
|
||||
{
|
||||
// correct the position of rigid bodies with temporary velocity generated from split impulse
|
||||
btContactSolverInfo infoGlobal;
|
||||
btVector3 zero(0,0,0);
|
||||
for (int i = 0; i < m_nonStaticRigidBodies.size(); ++i)
|
||||
{
|
||||
btRigidBody* rb = m_nonStaticRigidBodies[i];
|
||||
//correct the position/orientation based on push/turn recovery
|
||||
btTransform newTransform;
|
||||
btVector3 pushVelocity = rb->getPushVelocity();
|
||||
btVector3 turnVelocity = rb->getTurnVelocity();
|
||||
if (pushVelocity[0] != 0.f || pushVelocity[1] != 0 || pushVelocity[2] != 0 || turnVelocity[0] != 0.f || turnVelocity[1] != 0 || turnVelocity[2] != 0)
|
||||
{
|
||||
btTransformUtil::integrateTransform(rb->getWorldTransform(), pushVelocity, turnVelocity * infoGlobal.m_splitImpulseTurnErp, timeStep, newTransform);
|
||||
rb->setWorldTransform(newTransform);
|
||||
rb->setPushVelocity(zero);
|
||||
rb->setTurnVelocity(zero);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void btDeformableMultiBodyDynamicsWorld::integrateTransforms(btScalar timeStep)
|
||||
{
|
||||
BT_PROFILE("integrateTransforms");
|
||||
positionCorrection(timeStep);
|
||||
btMultiBodyDynamicsWorld::integrateTransforms(timeStep);
|
||||
for (int i = 0; i < m_softBodies.size(); ++i)
|
||||
{
|
||||
@@ -142,6 +165,8 @@ void btDeformableMultiBodyDynamicsWorld::integrateTransforms(btScalar timeStep)
|
||||
}
|
||||
}
|
||||
node.m_x = node.m_x + timeStep * node.m_v;
|
||||
node.m_v -= node.m_vsplit;
|
||||
node.m_vsplit.setZero();
|
||||
node.m_q = node.m_x;
|
||||
node.m_vn = node.m_v;
|
||||
}
|
||||
|
||||
@@ -257,6 +257,7 @@ public:
|
||||
btVector3 m_x; // Position
|
||||
btVector3 m_q; // Previous step position/Test position
|
||||
btVector3 m_v; // Velocity
|
||||
btVector3 m_vsplit; // Temporary Velocity in addintion to velocity used in split impulse
|
||||
btVector3 m_vn; // Previous step velocity
|
||||
btVector3 m_f; // Force accumulator
|
||||
btVector3 m_n; // Normal
|
||||
|
||||
Reference in New Issue
Block a user