add some documentation

This commit is contained in:
Xuchen Han
2019-09-17 15:55:15 -07:00
parent ae42cc561e
commit d761b2cd68
14 changed files with 95 additions and 78 deletions

View File

@@ -62,37 +62,6 @@ struct DeformableContactConstraint
{ {
} }
}; };
//
//
//struct DeformableFaceContactConstraint
//{
// const btSoftBody::Face* m_face;
// const btSoftBody::FaceRContact* m_contact;
// btVector3 m_total_normal_dv;
// btVector3 m_total_tangent_dv;
// bool m_static;
// bool m_can_be_dynamic;
//
// DeformableFaceContactConstraint(const btSoftBody::FaceRContact& rcontact)
// : m_face(rcontact.m_face),
// m_contact(&rcontact),
// m_total_normal_dv(0,0,0),
// m_total_tangent_dv(0,0,0),
// m_static(false),
// m_can_be_dynamic(true)
// {
// }
//
// void replace(const btSoftBody::FaceRContact& rcontact)
// {
// m_contact = &rcontact;
// m_face = rcontact.m_face;
// }
//
// ~DeformableFaceContactConstraint()
// {
// }
//};
class btCGProjection class btCGProjection
{ {

View File

@@ -37,7 +37,7 @@ public:
virtual ~btConjugateGradient(){} virtual ~btConjugateGradient(){}
// return the number of iterations taken // return the number of iterations taken
int solve(MatrixX& A, TVStack& x, const TVStack& b, btScalar relative_tolerance, bool verbose = false) int solve(MatrixX& A, TVStack& x, const TVStack& b, bool verbose = false)
{ {
BT_PROFILE("CGSolve"); BT_PROFILE("CGSolve");
btAssert(x.size() == b.size()); btAssert(x.size() == b.size());
@@ -50,7 +50,6 @@ public:
A.precondition(r, z); A.precondition(r, z);
A.project(z); A.project(z);
btScalar r_dot_z = dot(z,r); btScalar r_dot_z = dot(z,r);
// btScalar local_tolerance = btMin(relative_tolerance * std::sqrt(r_dot_z), tolerance);
btScalar local_tolerance = tolerance; btScalar local_tolerance = tolerance;
if (std::sqrt(r_dot_z) <= local_tolerance) { if (std::sqrt(r_dot_z) <= local_tolerance) {
if (verbose) if (verbose)

View File

@@ -76,7 +76,6 @@ void btDeformableBodySolver::solveDeformableConstraints(btScalar solverdt)
btScalar inner_product = computeDescentStep(m_ddv,m_residual); btScalar inner_product = computeDescentStep(m_ddv,m_residual);
btScalar alpha = 0.01, beta = 0.5; // Boyd & Vandenberghe suggested alpha between 0.01 and 0.3, beta between 0.1 to 0.8 btScalar alpha = 0.01, beta = 0.5; // Boyd & Vandenberghe suggested alpha between 0.01 and 0.3, beta between 0.1 to 0.8
btScalar scale = 2; btScalar scale = 2;
// todo xuchenhan@: add damping energy to f0 and f1
btScalar f0 = m_objective->totalEnergy(solverdt)+kineticEnergy(), f1, f2; btScalar f0 = m_objective->totalEnergy(solverdt)+kineticEnergy(), f1, f2;
backupDv(); backupDv();
do { do {
@@ -152,9 +151,7 @@ void btDeformableBodySolver::updateEnergy(btScalar scale)
btScalar btDeformableBodySolver::computeDescentStep(TVStack& ddv, const TVStack& residual) btScalar btDeformableBodySolver::computeDescentStep(TVStack& ddv, const TVStack& residual)
{ {
// btScalar relative_tolerance = btMin(btScalar(0.5), std::sqrt(btMax(m_objective->computeNorm(residual), m_newtonTolerance))); m_cg.solve(*m_objective, ddv, residual, false);
btScalar relative_tolerance = 0.5;
m_cg.solve(*m_objective, ddv, residual, relative_tolerance, false);
btScalar inner_product = m_cg.dot(residual, m_ddv); btScalar inner_product = m_cg.dot(residual, m_ddv);
btScalar res_norm = m_objective->computeNorm(residual); btScalar res_norm = m_objective->computeNorm(residual);
btScalar tol = 1e-5 * res_norm * m_objective->computeNorm(m_ddv); btScalar tol = 1e-5 * res_norm * m_objective->computeNorm(m_ddv);
@@ -197,10 +194,7 @@ void btDeformableBodySolver::updateDv(btScalar scale)
void btDeformableBodySolver::computeStep(TVStack& ddv, const TVStack& residual) void btDeformableBodySolver::computeStep(TVStack& ddv, const TVStack& residual)
{ {
//btScalar tolerance = std::numeric_limits<btScalar>::epsilon() * m_objective->computeNorm(residual); m_cg.solve(*m_objective, ddv, residual, false);
// btScalar relative_tolerance = btMin(btScalar(0.5), std::sqrt(btMax(m_objective->computeNorm(residual), m_newtonTolerance)));
btScalar relative_tolerance = 0.5;
m_cg.solve(*m_objective, ddv, residual, relative_tolerance, false);
} }
void btDeformableBodySolver::reinitialize(const btAlignedObjectArray<btSoftBody *>& softBodies, btScalar dt) void btDeformableBodySolver::reinitialize(const btAlignedObjectArray<btSoftBody *>& softBodies, btScalar dt)

View File

@@ -193,6 +193,13 @@ btVector3 btDeformableNodeRigidContactConstraint::getDv(const btSoftBody::Node*
return m_total_normal_dv + m_total_tangent_dv; return m_total_normal_dv + m_total_tangent_dv;
} }
void btDeformableNodeRigidContactConstraint::applyImpulse(const btVector3& impulse)
{
const btSoftBody::DeformableNodeRigidContact* contact = getContact();
btVector3 dv = impulse * contact->m_c2;
contact->m_node->m_v -= dv;
}
/* ================ Face vs. Rigid =================== */ /* ================ Face vs. Rigid =================== */
btDeformableFaceRigidContactConstraint::btDeformableFaceRigidContactConstraint(const btSoftBody::DeformableFaceRigidContact& contact) btDeformableFaceRigidContactConstraint::btDeformableFaceRigidContactConstraint(const btSoftBody::DeformableFaceRigidContact& contact)
: m_face(contact.m_face) : m_face(contact.m_face)
@@ -230,6 +237,19 @@ btVector3 btDeformableFaceRigidContactConstraint::getDv(const btSoftBody::Node*
return face_dv * contact->m_weights[2]; return face_dv * contact->m_weights[2];
} }
void btDeformableFaceRigidContactConstraint::applyImpulse(const btVector3& impulse)
{
const btSoftBody::DeformableFaceRigidContact* contact = getContact();
btVector3 dv = impulse * contact->m_c2;
btSoftBody::Face* face = contact->m_face;
if (face->m_n[0]->m_im > 0)
face->m_n[0]->m_v -= dv * contact->m_weights[0];
if (face->m_n[1]->m_im > 0)
face->m_n[1]->m_v -= dv * contact->m_weights[1];
if (face->m_n[2]->m_im > 0)
face->m_n[2]->m_v -= dv * contact->m_weights[2];
}
/* ================ Face vs. Node =================== */ /* ================ Face vs. Node =================== */
btDeformableFaceNodeContactConstraint::btDeformableFaceNodeContactConstraint(const btSoftBody::DeformableFaceNodeContact& contact) btDeformableFaceNodeContactConstraint::btDeformableFaceNodeContactConstraint(const btSoftBody::DeformableFaceNodeContact& contact)
: m_node(contact.m_node) : m_node(contact.m_node)

View File

@@ -17,6 +17,7 @@
#define BT_DEFORMABLE_CONTACT_CONSTRAINT_H #define BT_DEFORMABLE_CONTACT_CONSTRAINT_H
#include "btSoftBody.h" #include "btSoftBody.h"
// btDeformableContactConstraint is an abstract class specifying the method that each type of contact constraint needs to implement
class btDeformableContactConstraint class btDeformableContactConstraint
{ {
public: public:
@@ -45,10 +46,8 @@ public:
virtual ~btDeformableContactConstraint(){} virtual ~btDeformableContactConstraint(){}
// solve the constraint with inelastic impulse and return the error, which is the square of normal component of dt scaled velocity diffrerence // solve the constraint with inelastic impulse and return the error, which is the square of normal component of velocity diffrerence
// the constraint is solved by calculating the impulse between object A and B in the contact and apply the impulse. // the constraint is solved by calculating the impulse between object A and B in the contact and apply the impulse to both objects involved in the contact
// if the object is rigid/multibody apply the impulse to change the velocity,
// if the object is deformable node, change the according dv.
virtual btScalar solveConstraint() = 0; virtual btScalar solveConstraint() = 0;
// get the velocity of the object A in the contact // get the velocity of the object A in the contact
@@ -64,6 +63,8 @@ public:
virtual void applyImpulse(const btVector3& impulse) = 0; virtual void applyImpulse(const btVector3& impulse) = 0;
}; };
//
// Constraint that a certain node in the deformable objects cannot move
class btDeformableStaticConstraint : public btDeformableContactConstraint class btDeformableStaticConstraint : public btDeformableContactConstraint
{ {
public: public:
@@ -107,6 +108,8 @@ public:
virtual void applyImpulse(const btVector3& impulse){} virtual void applyImpulse(const btVector3& impulse){}
}; };
//
// Constraint between rigid/multi body and deformable objects
class btDeformableRigidContactConstraint : public btDeformableContactConstraint class btDeformableRigidContactConstraint : public btDeformableContactConstraint
{ {
public: public:
@@ -121,17 +124,18 @@ public:
{ {
} }
// object A is the rigid/multi body, and object B is the deformable node // object A is the rigid/multi body, and object B is the deformable node/face
virtual btVector3 getVa() const; virtual btVector3 getVa() const;
virtual btScalar solveConstraint(); virtual btScalar solveConstraint();
}; };
//
// Constraint between rigid/multi body and deformable objects nodes
class btDeformableNodeRigidContactConstraint : public btDeformableRigidContactConstraint class btDeformableNodeRigidContactConstraint : public btDeformableRigidContactConstraint
{ {
public: public:
// the deformable node in contact
const btSoftBody::Node* m_node; const btSoftBody::Node* m_node;
btDeformableNodeRigidContactConstraint(){} btDeformableNodeRigidContactConstraint(){}
@@ -142,24 +146,23 @@ public:
{ {
} }
// get the velocity of the deformable node in contact
virtual btVector3 getVb() const; virtual btVector3 getVb() const;
// get the velocity change of the input soft body node in the constraint
virtual btVector3 getDv(const btSoftBody::Node*) const; virtual btVector3 getDv(const btSoftBody::Node*) const;
// cast the contact to the desired type
const btSoftBody::DeformableNodeRigidContact* getContact() const const btSoftBody::DeformableNodeRigidContact* getContact() const
{ {
return static_cast<const btSoftBody::DeformableNodeRigidContact*>(m_contact); return static_cast<const btSoftBody::DeformableNodeRigidContact*>(m_contact);
} }
virtual void applyImpulse(const btVector3& impulse) virtual void applyImpulse(const btVector3& impulse);
{
const btSoftBody::DeformableNodeRigidContact* contact = getContact();
btVector3 dv = impulse * contact->m_c2;
contact->m_node->m_v -= dv;
}
}; };
//
// Constraint between rigid/multi body and deformable objects faces
class btDeformableFaceRigidContactConstraint : public btDeformableRigidContactConstraint class btDeformableFaceRigidContactConstraint : public btDeformableRigidContactConstraint
{ {
public: public:
@@ -172,29 +175,23 @@ public:
{ {
} }
// get the velocity of the deformable face at the contact point
virtual btVector3 getVb() const; virtual btVector3 getVb() const;
// get the velocity change of the input soft body node in the constraint
virtual btVector3 getDv(const btSoftBody::Node*) const; virtual btVector3 getDv(const btSoftBody::Node*) const;
// cast the contact to the desired type
const btSoftBody::DeformableFaceRigidContact* getContact() const const btSoftBody::DeformableFaceRigidContact* getContact() const
{ {
return static_cast<const btSoftBody::DeformableFaceRigidContact*>(m_contact); return static_cast<const btSoftBody::DeformableFaceRigidContact*>(m_contact);
} }
virtual void applyImpulse(const btVector3& impulse) virtual void applyImpulse(const btVector3& impulse);
{
const btSoftBody::DeformableFaceRigidContact* contact = getContact();
btVector3 dv = impulse * contact->m_c2;
btSoftBody::Face* face = contact->m_face;
if (face->m_n[0]->m_im > 0)
face->m_n[0]->m_v -= dv * contact->m_weights[0];
if (face->m_n[1]->m_im > 0)
face->m_n[1]->m_v -= dv * contact->m_weights[1];
if (face->m_n[2]->m_im > 0)
face->m_n[2]->m_v -= dv * contact->m_weights[2];
}
}; };
//
// Constraint between deformable objects faces and deformable objects nodes
class btDeformableFaceNodeContactConstraint : public btDeformableContactConstraint class btDeformableFaceNodeContactConstraint : public btDeformableContactConstraint
{ {
public: public:
@@ -218,9 +215,10 @@ public:
// get the velocity of the object B in the contact // get the velocity of the object B in the contact
virtual btVector3 getVb() const; virtual btVector3 getVb() const;
// get the velocity change of the soft body node in the constraint // get the velocity change of the input soft body node in the constraint
virtual btVector3 getDv(const btSoftBody::Node*) const; virtual btVector3 getDv(const btSoftBody::Node*) const;
// cast the contact to the desired type
const btSoftBody::DeformableFaceNodeContact* getContact() const const btSoftBody::DeformableFaceNodeContact* getContact() const
{ {
return static_cast<const btSoftBody::DeformableFaceNodeContact*>(m_contact); return static_cast<const btSoftBody::DeformableFaceNodeContact*>(m_contact);

View File

@@ -73,6 +73,7 @@ public:
return BT_GRAVITY_FORCE; return BT_GRAVITY_FORCE;
} }
// the gravitational potential energy
virtual double totalEnergy(btScalar dt) virtual double totalEnergy(btScalar dt)
{ {
double e = 0; double e = 0;

View File

@@ -77,6 +77,7 @@ public:
return numNodes; return numNodes;
} }
// add a soft body to be affected by the particular lagrangian force
virtual void addSoftBody(btSoftBody* psb) virtual void addSoftBody(btSoftBody* psb)
{ {
m_softBodies.push_back(psb); m_softBodies.push_back(psb);
@@ -87,6 +88,7 @@ public:
m_nodes = nodes; m_nodes = nodes;
} }
// Calculate the incremental deformable generated from the input dx
virtual btMatrix3x3 Ds(int id0, int id1, int id2, int id3, const TVStack& dx) virtual btMatrix3x3 Ds(int id0, int id1, int id2, int id3, const TVStack& dx)
{ {
btVector3 c1 = dx[id1] - dx[id0]; btVector3 c1 = dx[id1] - dx[id0];
@@ -98,6 +100,7 @@ public:
return dF; return dF;
} }
// Calculate the incremental deformable generated from the current velocity
virtual btMatrix3x3 DsFromVelocity(const btSoftBody::Node* n0, const btSoftBody::Node* n1, const btSoftBody::Node* n2, const btSoftBody::Node* n3) virtual btMatrix3x3 DsFromVelocity(const btSoftBody::Node* n0, const btSoftBody::Node* n1, const btSoftBody::Node* n2, const btSoftBody::Node* n3)
{ {
btVector3 c1 = n1->m_v - n0->m_v; btVector3 c1 = n1->m_v - n0->m_v;

View File

@@ -27,10 +27,17 @@ btScalar btDeformableMultiBodyConstraintSolver::solveGroupCacheFriendlyIteration
int maxIterations = m_maxOverrideNumSolverIterations > infoGlobal.m_numIterations ? m_maxOverrideNumSolverIterations : infoGlobal.m_numIterations; int maxIterations = m_maxOverrideNumSolverIterations > infoGlobal.m_numIterations ? m_maxOverrideNumSolverIterations : infoGlobal.m_numIterations;
for (int iteration = 0; iteration < maxIterations; iteration++) for (int iteration = 0; iteration < maxIterations; iteration++)
{ {
m_leastSquaresResidual = solveSingleIteration(iteration, bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer); // rigid bodies are solved using solver body velocity, but rigid/deformable contact directly uses the velocity of the actual rigid body. So we have to do the following: Solve one iteration of the rigid/rigid contact, get the updated velocity in the solver body and update the velocity of the underlying rigid body. Then solve the rigid/deformable contact. Finally, grab the (once again) updated rigid velocity and update the velocity of the wrapping solver body
// solve rigid/rigid in solver body
m_leastSquaresResidual = solveSingleIteration(iteration, bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
// solver body velocity -> rigid body velocity
solverBodyWriteBack(infoGlobal); solverBodyWriteBack(infoGlobal);
// update rigid body velocity in rigid/deformable contact
m_leastSquaresResidual = btMax(m_leastSquaresResidual, m_deformableSolver->solveContactConstraints()); m_leastSquaresResidual = btMax(m_leastSquaresResidual, m_deformableSolver->solveContactConstraints());
// solver body velocity <- rigid body velocity
writeToSolverBody(bodies, numBodies, infoGlobal); writeToSolverBody(bodies, numBodies, infoGlobal);
if (m_leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || (iteration >= (maxIterations - 1))) if (m_leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || (iteration >= (maxIterations - 1)))

View File

@@ -31,6 +31,7 @@ protected:
// override the iterations method to include deformable/multibody contact // override the iterations method to include deformable/multibody contact
virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer); virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
// write the velocity of the the solver body to the underlying rigid body
void solverBodyWriteBack(const btContactSolverInfo& infoGlobal) void solverBodyWriteBack(const btContactSolverInfo& infoGlobal)
{ {
for (int i = 0; i < m_tmpSolverBodyPool.size(); i++) for (int i = 0; i < m_tmpSolverBodyPool.size(); i++)

View File

@@ -55,7 +55,7 @@ void btDeformableMultiBodyDynamicsWorld::internalSingleStepSimulation(btScalar t
beforeSolverCallbacks(timeStep); beforeSolverCallbacks(timeStep);
///solve deformable bodies constraints ///solve contact constraints and then deformable bodies momemtum equation
solveConstraints(timeStep); solveConstraints(timeStep);
afterSolverCallbacks(timeStep); afterSolverCallbacks(timeStep);
@@ -193,7 +193,11 @@ void btDeformableMultiBodyDynamicsWorld::solveConstraints(btScalar timeStep)
// set up constraints among multibodies and between multibodies and deformable bodies // set up constraints among multibodies and between multibodies and deformable bodies
setupConstraints(); setupConstraints();
solveMultiBodyRelatedConstraints();
// solve contact constraints
solveContactConstraints();
// set up the directions in which the velocity does not change in the momentum solve
m_deformableBodySolver->m_objective->m_projection.setProjection(); m_deformableBodySolver->m_objective->m_projection.setProjection();
// for explicit scheme, m_backupVelocity = v_{n+1}^* // for explicit scheme, m_backupVelocity = v_{n+1}^*
@@ -202,6 +206,7 @@ void btDeformableMultiBodyDynamicsWorld::solveConstraints(btScalar timeStep)
m_deformableBodySolver->setupDeformableSolve(m_implicit); m_deformableBodySolver->setupDeformableSolve(m_implicit);
// At this point, dv should be golden for nodes in contact // At this point, dv should be golden for nodes in contact
// proceed to solve deformable momentum equation
m_deformableBodySolver->solveDeformableConstraints(timeStep); m_deformableBodySolver->solveDeformableConstraints(timeStep);
} }
@@ -217,7 +222,6 @@ void btDeformableMultiBodyDynamicsWorld::setupConstraints()
btMultiBodyConstraint** sortedMultiBodyConstraints = m_sortedMultiBodyConstraints.size() ? &m_sortedMultiBodyConstraints[0] : 0; btMultiBodyConstraint** sortedMultiBodyConstraints = m_sortedMultiBodyConstraints.size() ? &m_sortedMultiBodyConstraints[0] : 0;
btTypedConstraint** constraintsPtr = getNumConstraints() ? &m_sortedConstraints[0] : 0; btTypedConstraint** constraintsPtr = getNumConstraints() ? &m_sortedConstraints[0] : 0;
m_solverMultiBodyIslandCallback->setup(&m_solverInfo, constraintsPtr, m_sortedConstraints.size(), sortedMultiBodyConstraints, m_sortedMultiBodyConstraints.size(), getDebugDrawer()); m_solverMultiBodyIslandCallback->setup(&m_solverInfo, constraintsPtr, m_sortedConstraints.size(), sortedMultiBodyConstraints, m_sortedMultiBodyConstraints.size(), getDebugDrawer());
m_constraintSolver->prepareSolve(getCollisionWorld()->getNumCollisionObjects(), getCollisionWorld()->getDispatcher()->getNumManifolds());
// build islands // build islands
m_islandManager->buildIslands(getCollisionWorld()->getDispatcher(), getCollisionWorld()); m_islandManager->buildIslands(getCollisionWorld()->getDispatcher(), getCollisionWorld());
@@ -243,7 +247,7 @@ void btDeformableMultiBodyDynamicsWorld::sortConstraints()
} }
void btDeformableMultiBodyDynamicsWorld::solveMultiBodyRelatedConstraints() void btDeformableMultiBodyDynamicsWorld::solveContactConstraints()
{ {
// process constraints on each island // process constraints on each island
m_islandManager->processIslands(getCollisionWorld()->getDispatcher(), getCollisionWorld(), m_solverMultiBodyIslandCallback); m_islandManager->processIslands(getCollisionWorld()->getDispatcher(), getCollisionWorld(), m_solverMultiBodyIslandCallback);

View File

@@ -152,7 +152,7 @@ public:
void solveMultiBodyConstraints(); void solveMultiBodyConstraints();
void solveMultiBodyRelatedConstraints(); void solveContactConstraints();
void sortConstraints(); void sortConstraints();

View File

@@ -18,6 +18,7 @@ subject to the following restrictions:
#include "btDeformableLagrangianForce.h" #include "btDeformableLagrangianForce.h"
// This energy is as described in https://graphics.pixar.com/library/StableElasticity/paper.pdf
class btDeformableNeoHookeanForce : public btDeformableLagrangianForce class btDeformableNeoHookeanForce : public btDeformableLagrangianForce
{ {
public: public:
@@ -48,6 +49,7 @@ public:
addScaledElasticForce(scale, force); addScaledElasticForce(scale, force);
} }
// The damping matrix is calculated using the time n state as described in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
virtual void addScaledDampingForce(btScalar scale, TVStack& force) virtual void addScaledDampingForce(btScalar scale, TVStack& force)
{ {
if (m_mu_damp == 0 && m_lambda_damp == 0) if (m_mu_damp == 0 && m_lambda_damp == 0)
@@ -101,6 +103,7 @@ public:
return energy; return energy;
} }
// The damping energy is formulated as in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
virtual double totalDampingEnergy(btScalar dt) virtual double totalDampingEnergy(btScalar dt)
{ {
double energy = 0; double energy = 0;
@@ -174,6 +177,7 @@ public:
} }
} }
// The damping matrix is calculated using the time n state as described in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search
virtual void addScaledDampingForceDifferential(btScalar scale, const TVStack& dv, TVStack& df) virtual void addScaledDampingForceDifferential(btScalar scale, const TVStack& dv, TVStack& df)
{ {
if (m_mu_damp == 0 && m_lambda_damp == 0) if (m_mu_damp == 0 && m_lambda_damp == 0)
@@ -251,6 +255,8 @@ public:
P = s.m_F * m_mu * ( 1. - 1. / (s.m_trace + 1.)) + s.m_cofF * (m_lambda * (s.m_J - 1.) - 0.75 * m_mu); P = s.m_F * m_mu * ( 1. - 1. / (s.m_trace + 1.)) + s.m_cofF * (m_lambda * (s.m_J - 1.) - 0.75 * m_mu);
} }
// Let P be the first piola stress.
// This function calculates the dP = dP/dF * dF
void firstPiolaDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP) void firstPiolaDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP)
{ {
dP = dF * m_mu * ( 1. - 1. / (s.m_trace + 1.)) + s.m_F * (2*m_mu) * DotProduct(s.m_F, dF) * (1./((1.+s.m_trace)*(1.+s.m_trace))); dP = dF * m_mu * ( 1. - 1. / (s.m_trace + 1.)) + s.m_F * (2*m_mu) * DotProduct(s.m_F, dF) * (1./((1.+s.m_trace)*(1.+s.m_trace)));
@@ -259,6 +265,8 @@ public:
dP += s.m_cofF * m_lambda * DotProduct(s.m_cofF, dF); dP += s.m_cofF * m_lambda * DotProduct(s.m_cofF, dF);
} }
// Let Q be the damping stress.
// This function calculates the dP = dQ/dF * dF
void firstPiolaDampingDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP) void firstPiolaDampingDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP)
{ {
dP = dF * m_mu_damp * ( 1. - 1. / (s.m_trace + 1.)) + s.m_F * (2*m_mu_damp) * DotProduct(s.m_F, dF) * (1./((1.+s.m_trace)*(1.+s.m_trace))); dP = dF * m_mu_damp * ( 1. - 1. / (s.m_trace + 1.)) + s.m_F * (2*m_mu_damp) * DotProduct(s.m_F, dF) * (1./((1.+s.m_trace)*(1.+s.m_trace)));
@@ -277,6 +285,9 @@ public:
return ans; return ans;
} }
// Let C(A) be the cofactor of the matrix A
// Let H = the derivative of C(A) with respect to A evaluated at F = A
// This function calculates H*dF
void addScaledCofactorMatrixDifferential(const btMatrix3x3& F, const btMatrix3x3& dF, btScalar scale, btMatrix3x3& M) void addScaledCofactorMatrixDifferential(const btMatrix3x3& F, const btMatrix3x3& dF, btScalar scale, btMatrix3x3& M)
{ {
M[0][0] += scale * (dF[1][1] * F[2][2] + F[1][1] * dF[2][2] - dF[2][1] * F[1][2] - F[2][1] * dF[1][2]); M[0][0] += scale * (dF[1][1] * F[2][2] + F[1][1] * dF[2][2] - dF[2][1] * F[1][2] - F[2][1] * dF[1][2]);

View File

@@ -1457,8 +1457,7 @@ void btSoftBodyHelpers::duplicateFaces(const char* filename, const btSoftBody* p
fs_write.close(); fs_write.close();
} }
// Given a simplex with vertices a,b,c,d, find the barycentric weights of p in this simplex
void btSoftBodyHelpers::getBarycentricWeights(const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d, const btVector3& p, btVector4& bary) void btSoftBodyHelpers::getBarycentricWeights(const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d, const btVector3& p, btVector4& bary)
{ {
btVector3 vap = p - a; btVector3 vap = p - a;
@@ -1513,6 +1512,8 @@ void btSoftBodyHelpers::readRenderMeshFromObj(const char* file, btSoftBody* psb)
fs.close(); fs.close();
} }
// Iterate through all render nodes to find the simulation tetrahedron that contains the render node and record the barycentric weights
// If the node is not inside any tetrahedron, assign it to the tetrahedron in which the node has the least negative barycentric weight
void btSoftBodyHelpers::interpolateBarycentricWeights(btSoftBody* psb) void btSoftBodyHelpers::interpolateBarycentricWeights(btSoftBody* psb)
{ {
psb->m_renderNodesInterpolationWeights.resize(psb->m_renderNodes.size()); psb->m_renderNodesInterpolationWeights.resize(psb->m_renderNodes.size());

View File

@@ -29,6 +29,8 @@ subject to the following restrictions:
#include "BulletDynamics/Featherstone/btMultiBodyConstraint.h" #include "BulletDynamics/Featherstone/btMultiBodyConstraint.h"
#include <string.h> //for memset #include <string.h> //for memset
#include <cmath> #include <cmath>
// Given a multibody link, a contact point and a contact direction, fill in the jacobian data needed to calculate the velocity change given an impulse in the contact direction
static void findJacobian(const btMultiBodyLinkCollider* multibodyLinkCol, static void findJacobian(const btMultiBodyLinkCollider* multibodyLinkCol,
btMultiBodyJacobianData& jacobianData, btMultiBodyJacobianData& jacobianData,
const btVector3& contact_point, const btVector3& contact_point,
@@ -1068,7 +1070,7 @@ struct btSoftColliders
if (!n.m_battach) if (!n.m_battach)
{ {
// check for collision at x_{n+1}^* // check for collision at x_{n+1}^* as well at x_n
if (psb->checkDeformableContact(m_colObj1Wrap, n.m_x, m, c.m_cti, /*predict = */ true) || psb->checkDeformableContact(m_colObj1Wrap, n.m_q, m, c.m_cti, /*predict = */ true)) if (psb->checkDeformableContact(m_colObj1Wrap, n.m_x, m, c.m_cti, /*predict = */ true) || psb->checkDeformableContact(m_colObj1Wrap, n.m_q, m, c.m_cti, /*predict = */ true))
{ {
const btScalar ima = n.m_im; const btScalar ima = n.m_im;
@@ -1175,11 +1177,14 @@ struct btSoftColliders
btSoftBody::sCti& cti = c.m_cti; btSoftBody::sCti& cti = c.m_cti;
c.m_contactPoint = contact_point; c.m_contactPoint = contact_point;
c.m_bary = bary; c.m_bary = bary;
// todo xuchenhan@: check m_c2 and m_weights // todo xuchenhan@: this is assuming mass of all vertices are the same. Need to modify if mass are different for distinct vertices
c.m_weights = btScalar(2)/(btScalar(1) + bary.length2()) * bary; c.m_weights = btScalar(2)/(btScalar(1) + bary.length2()) * bary;
c.m_face = &f; c.m_face = &f;
const btScalar fc = psb->m_cfg.kDF * m_colObj1Wrap->getCollisionObject()->getFriction(); const btScalar fc = psb->m_cfg.kDF * m_colObj1Wrap->getCollisionObject()->getFriction();
// the effective inverse mass of the face as in https://graphics.stanford.edu/papers/cloth-sig02/cloth.pdf
ima = bary.getX()*c.m_weights.getX() * n0->m_im + bary.getY()*c.m_weights.getY() * n1->m_im + bary.getZ()*c.m_weights.getZ() * n2->m_im; ima = bary.getX()*c.m_weights.getX() * n0->m_im + bary.getY()*c.m_weights.getY() * n1->m_im + bary.getZ()*c.m_weights.getZ() * n2->m_im;
c.m_c2 = ima; c.m_c2 = ima;
c.m_c3 = fc; c.m_c3 = fc;
c.m_c4 = m_colObj1Wrap->getCollisionObject()->isStaticOrKinematicObject() ? psb->m_cfg.kKHR : psb->m_cfg.kCHR; c.m_c4 = m_colObj1Wrap->getCollisionObject()->isStaticOrKinematicObject() ? psb->m_cfg.kKHR : psb->m_cfg.kCHR;
@@ -1190,6 +1195,7 @@ struct btSoftColliders
const btMatrix3x3& iwi = m_rigidBody ? m_rigidBody->getInvInertiaTensorWorld() : iwiStatic; const btMatrix3x3& iwi = m_rigidBody ? m_rigidBody->getInvInertiaTensorWorld() : iwiStatic;
const btVector3 ra = contact_point - wtr.getOrigin(); const btVector3 ra = contact_point - wtr.getOrigin();
// we do not scale the impulse matrix by dt
c.m_c0 = ImpulseMatrix(1, ima, imb, iwi, ra); c.m_c0 = ImpulseMatrix(1, ima, imb, iwi, ra);
c.m_c1 = ra; c.m_c1 = ra;
if (m_rigidBody) if (m_rigidBody)
@@ -1307,6 +1313,7 @@ struct btSoftColliders
if (l < SIMD_EPSILON) if (l < SIMD_EPSILON)
return; return;
btVector3 rayEnd = dir.normalized() * (l + 2*mrg); btVector3 rayEnd = dir.normalized() * (l + 2*mrg);
// register an intersection if the line segment formed by the trajectory of the node in the timestep intersects the face
bool intersect = lineIntersectsTriangle(btVector3(0,0,0), rayEnd, face->m_n[0]->m_x-o, face->m_n[1]->m_x-o, face->m_n[2]->m_x-o, p, normal); bool intersect = lineIntersectsTriangle(btVector3(0,0,0), rayEnd, face->m_n[0]->m_x-o, face->m_n[1]->m_x-o, face->m_n[2]->m_x-o, p, normal);
if (intersect) if (intersect)
@@ -1324,8 +1331,10 @@ struct btSoftColliders
c.m_node = node; c.m_node = node;
c.m_face = face; c.m_face = face;
c.m_bary = w; c.m_bary = w;
// todo xuchenhan@: this is assuming mass of all vertices are the same. Need to modify if mass are different for distinct vertices
c.m_weights = btScalar(2)/(btScalar(1) + w.length2()) * w; c.m_weights = btScalar(2)/(btScalar(1) + w.length2()) * w;
c.m_friction = btMax(psb[0]->m_cfg.kDF, psb[1]->m_cfg.kDF); c.m_friction = btMax(psb[0]->m_cfg.kDF, psb[1]->m_cfg.kDF);
// the effective inverse mass of the face as in https://graphics.stanford.edu/papers/cloth-sig02/cloth.pdf
c.m_imf = c.m_bary[0]*c.m_weights[0] * n[0]->m_im + c.m_bary[1]*c.m_weights[1] * n[1]->m_im + c.m_bary[2]*c.m_weights[2] * n[2]->m_im; c.m_imf = c.m_bary[0]*c.m_weights[0] * n[0]->m_im + c.m_bary[1]*c.m_weights[1] * n[1]->m_im + c.m_bary[2]*c.m_weights[2] * n[2]->m_im;
c.m_c0 = btScalar(1)/(ma + c.m_imf); c.m_c0 = btScalar(1)/(ma + c.m_imf);
psb[0]->m_faceNodeContacts.push_back(c); psb[0]->m_faceNodeContacts.push_back(c);