add option to terminate PGS constraint solvers based on a least square residual threshold

(for example solverInfo().m_leastSquaresResidualThreshold = 1e-7 and use large m_numSolverIterations
disable sphere-sphere contact cache, it is buggy (some contact point stay in the cache, when sphere penetrates more than total margins)
tweak some gpu demo settings
This commit is contained in:
Erwin Coumans
2016-12-16 18:09:52 -08:00
parent 38b10137c9
commit dcd02a1e15
11 changed files with 111 additions and 37 deletions

View File

@@ -58,7 +58,7 @@ struct btContactSolverInfoData
int m_minimumSolverBatchSize;
btScalar m_maxGyroscopicForce;
btScalar m_singleAxisRollingFrictionThreshold;
btScalar m_leastSquaresResidualThreshold;
};
@@ -91,6 +91,7 @@ struct btContactSolverInfo : public btContactSolverInfoData
m_minimumSolverBatchSize = 128; //try to combine islands until the amount of constraints reaches this limit
m_maxGyroscopicForce = 100.f; ///it is only used for 'explicit' version of gyroscopic force
m_singleAxisRollingFrictionThreshold = 1e30f;///if the velocity is above this threshold, it will use a single constraint row (axis), otherwise 3 rows.
m_leastSquaresResidualThreshold = 0.f;
}
};

View File

@@ -39,7 +39,7 @@ int gNumSplitImpulseRecoveries = 0;
#include "BulletDynamics/Dynamics/btRigidBody.h"
#define VERBOSE_RESIDUAL_PRINTF 1
///This is the scalar reference implementation of solving a single constraint row, the innerloop of the Projected Gauss Seidel/Sequential Impulse constraint solver
///Below are optional SSE2 and SSE4/FMA3 versions. We assume most hardware has SSE2. For SSE4/FMA3 we perform a CPU feature check.
static btSimdScalar gResolveSingleConstraintRowGeneric_scalar_reference(btSolverBody& body1, btSolverBody& body2, const btSolverConstraint& c)
@@ -298,15 +298,17 @@ btSimdScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowe
}
void btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFriendly(
btScalar btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFriendly(
btSolverBody& body1,
btSolverBody& body2,
const btSolverConstraint& c)
{
btScalar deltaImpulse = 0.f;
if (c.m_rhsPenetration)
{
gNumSplitImpulseRecoveries++;
btScalar deltaImpulse = c.m_rhsPenetration-btScalar(c.m_appliedPushImpulse)*c.m_cfm;
deltaImpulse = c.m_rhsPenetration-btScalar(c.m_appliedPushImpulse)*c.m_cfm;
const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(body1.internalGetPushVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetTurnVelocity());
const btScalar deltaVel2Dotn = c.m_contactNormal2.dot(body2.internalGetPushVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetTurnVelocity());
@@ -325,9 +327,10 @@ void btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFri
body1.internalApplyPushImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
body2.internalApplyPushImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
}
return deltaImpulse;
}
void btSequentialImpulseConstraintSolver::resolveSplitPenetrationSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
btScalar btSequentialImpulseConstraintSolver::resolveSplitPenetrationSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
{
#ifdef USE_SIMD
if (!c.m_rhsPenetration)
@@ -357,8 +360,9 @@ void btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFri
body1.internalGetTurnVelocity().mVec128 = _mm_add_ps(body1.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
body2.internalGetPushVelocity().mVec128 = _mm_add_ps(body2.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.internalGetTurnVelocity().mVec128 = _mm_add_ps(body2.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
return deltaImpulse;
#else
resolveSplitPenetrationImpulseCacheFriendly(body1,body2,c);
return resolveSplitPenetrationImpulseCacheFriendly(body1,body2,c);
#endif
}
@@ -1601,6 +1605,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** /*bodies */,int /*numBodies*/,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/)
{
btScalar leastSquaresResidual = 0.f;
int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
int numConstraintPool = m_tmpSolverContactConstraintPool.size();
@@ -1645,7 +1650,10 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
{
btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
if (iteration < constraint.m_overrideNumSolverIterations)
resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
{
btScalar residual = resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
leastSquaresResidual += residual*residual;
}
}
if (iteration< infoGlobal.m_numIterations)
@@ -1674,7 +1682,9 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[c]];
resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
btScalar residual = resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
leastSquaresResidual += residual*residual;
totalImpulse = solveManifold.m_appliedImpulse;
}
bool applyFriction = true;
@@ -1689,7 +1699,8 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
btScalar residual = resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
leastSquaresResidual += residual*residual;
}
}
@@ -1703,7 +1714,8 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
btScalar residual = resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
leastSquaresResidual += residual*residual;
}
}
}
@@ -1719,8 +1731,8 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
btScalar residual = resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
leastSquaresResidual += residual*residual;
}
@@ -1738,7 +1750,8 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
btScalar residual = resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
leastSquaresResidual += residual*residual;
}
}
@@ -1758,7 +1771,8 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
rollingFrictionConstraint.m_lowerLimit = -rollingFrictionMagnitude;
rollingFrictionConstraint.m_upperLimit = rollingFrictionMagnitude;
resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint);
btScalar residual = resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint);
leastSquaresResidual += residual*residual;
}
}
@@ -1773,7 +1787,10 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
{
btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
if (iteration < constraint.m_overrideNumSolverIterations)
resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
{
btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
leastSquaresResidual += residual*residual;
}
}
if (iteration< infoGlobal.m_numIterations)
@@ -1794,7 +1811,8 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
for (int j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
btScalar residual = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
leastSquaresResidual += residual*residual;
}
///solve all friction constraints
int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
@@ -1808,7 +1826,8 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
leastSquaresResidual += residual*residual;
}
}
@@ -1826,12 +1845,13 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
rollingFrictionConstraint.m_lowerLimit = -rollingFrictionMagnitude;
rollingFrictionConstraint.m_upperLimit = rollingFrictionMagnitude;
resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint);
btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint);
leastSquaresResidual += residual*residual;
}
}
}
}
return 0.f;
return leastSquaresResidual;
}
@@ -1844,6 +1864,7 @@ void btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySplitImpulseIte
{
for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
{
btScalar leastSquaresResidual =0.f;
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
@@ -1851,15 +1872,24 @@ void btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySplitImpulseIte
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSplitPenetrationSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
btScalar residual = resolveSplitPenetrationSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
leastSquaresResidual += residual*residual;
}
}
if (leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || iteration>=(infoGlobal.m_numIterations-1))
{
#ifdef VERBOSE_RESIDUAL_PRINTF
printf("residual = %f at iteration #%d\n",leastSquaresResidual,iteration);
#endif
break;
}
}
}
else
{
for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
{
btScalar leastSquaresResidual = 0.f;
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
@@ -1867,7 +1897,15 @@ void btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySplitImpulseIte
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSplitPenetrationImpulseCacheFriendly(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
btScalar residual = resolveSplitPenetrationImpulseCacheFriendly(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
leastSquaresResidual += residual*residual;
}
if (leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || iteration>=(infoGlobal.m_numIterations-1))
{
#ifdef VERBOSE_RESIDUAL_PRINTF
printf("residual = %f at iteration #%d\n",leastSquaresResidual,iteration);
#endif
break;
}
}
}
@@ -1888,7 +1926,15 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(
for ( int iteration = 0 ; iteration< maxIterations ; iteration++)
//for ( int iteration = maxIterations-1 ; iteration >= 0;iteration--)
{
solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
m_leastSquaresResidual = solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
if (m_leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || (iteration>= (maxIterations-1)))
{
#ifdef VERBOSE_RESIDUAL_PRINTF
printf("residual = %f at iteration #%d\n",m_leastSquaresResidual,iteration);
#endif
break;
}
}
}

View File

@@ -57,6 +57,8 @@ protected:
btSingleConstraintRowSolver m_resolveSingleConstraintRowGeneric;
btSingleConstraintRowSolver m_resolveSingleConstraintRowLowerLimit;
btScalar m_leastSquaresResidual;
void setupFrictionConstraint( btSolverConstraint& solverConstraint, const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,
btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,
btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation,
@@ -90,11 +92,11 @@ protected:
void convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal);
void resolveSplitPenetrationSIMD(
btScalar resolveSplitPenetrationSIMD(
btSolverBody& bodyA,btSolverBody& bodyB,
const btSolverConstraint& contactConstraint);
void resolveSplitPenetrationImpulseCacheFriendly(
btScalar resolveSplitPenetrationImpulseCacheFriendly(
btSolverBody& bodyA,btSolverBody& bodyB,
const btSolverConstraint& contactConstraint);