Merge branch 'master' into master

This commit is contained in:
YunfeiBai
2018-01-08 18:13:03 -08:00
committed by GitHub
41 changed files with 2968 additions and 1413 deletions

View File

@@ -0,0 +1,32 @@
import pybullet as p
import time
p.connect(p.GUI)
obUids = p.loadMJCF("mjcf/humanoid.xml")
humanoid = obUids[1]
gravId = p.addUserDebugParameter("gravity",-10,10,-10)
jointIds=[]
paramIds=[]
p.setPhysicsEngineParameter(numSolverIterations=10)
p.changeDynamics(humanoid,-1,linearDamping=0, angularDamping=0)
for j in range (p.getNumJoints(humanoid)):
p.changeDynamics(humanoid,j,linearDamping=0, angularDamping=0)
info = p.getJointInfo(humanoid,j)
#print(info)
jointName = info[1]
jointType = info[2]
if (jointType==p.JOINT_PRISMATIC or jointType==p.JOINT_REVOLUTE):
jointIds.append(j)
paramIds.append(p.addUserDebugParameter(jointName.decode("utf-8"),-4,4,0))
p.setRealTimeSimulation(1)
while(1):
p.setGravity(0,0,p.readUserDebugParameter(gravId))
for i in range(len(paramIds)):
c = paramIds[i]
targetPos = p.readUserDebugParameter(c)
p.setJointMotorControl2(humanoid,jointIds[i],p.POSITION_CONTROL,targetPos, force=5*240.)
time.sleep(0.01)

View File

@@ -0,0 +1,26 @@
import pybullet as p
import time
p.connect(p.GUI)
door=p.loadURDF("door.urdf")
#linear/angular damping for base and all children=0
p.changeDynamics(door,-1,linearDamping=0, angularDamping=0)
for j in range (p.getNumJoints(door)):
p.changeDynamics(door,j,linearDamping=0, angularDamping=0)
print(p.getJointInfo(door,j))
frictionId = p.addUserDebugParameter("jointFriction",0,20,10)
torqueId = p.addUserDebugParameter("joint torque",0,20,5)
while (1):
frictionForce = p.readUserDebugParameter(frictionId)
jointTorque = p.readUserDebugParameter(torqueId)
#set the joint friction
p.setJointMotorControl2(door,1,p.VELOCITY_CONTROL,targetVelocity=0,force=frictionForce)
#apply a joint torque
p.setJointMotorControl2(door,1,p.TORQUE_CONTROL,force=jointTorque)
p.stepSimulation()
time.sleep(0.01)

View File

@@ -0,0 +1,567 @@
import pybullet as p
import time
class UrdfInertial(object):
def __init__(self):
self.mass = 1
self.inertia_xxyyzz=[7,8,9]
self.origin_rpy=[1,2,3]
self.origin_xyz=[4,5,6]
class UrdfContact(object):
def __init__(self):
self.lateral_friction = 1
self.rolling_friction = 0
self.spinning_friction = 0
class UrdfLink(object):
def __init__(self):
self.link_name = "dummy"
self.urdf_inertial = UrdfInertial()
self.urdf_visual_shapes=[]
self.urdf_collision_shapes=[]
class UrdfVisual(object):
def __init__(self):
self.origin_rpy = [1,2,3]
self.origin_xyz = [4,5,6]
self.geom_type = p.GEOM_BOX
self.geom_radius = 1
self.geom_extents = [7,8,9]
self.geom_length=[10]
self.geom_meshfilename = "meshfile"
self.geom_meshscale=[1,1,1]
self.material_rgba = [1,0,0,1]
self.material_name = ""
class UrdfCollision(object):
def __init__(self):
self.origin_rpy = [1,2,3]
self.origin_xyz = [4,5,6]
self.geom_type = p.GEOM_BOX
self.geom_radius = 1
self.geom_length = 2
self.geom_extents = [7,8,9]
self.geom_meshfilename = "meshfile"
self.geom_meshscale = [1,1,1]
class UrdfJoint(object):
def __init__(self):
self.link = UrdfLink()
self.joint_name = "joint_dummy"
self.joint_type = p.JOINT_REVOLUTE
self.joint_lower_limit = 0
self.joint_upper_limit = -1
self.parent_name = "parentName"
self.child_name = "childName"
self.joint_origin_xyz = [1,2,3]
self.joint_origin_rpy = [1,2,3]
self.joint_axis_xyz = [1,2,3]
class UrdfEditor(object):
def __init__(self):
self.initialize()
def initialize(self):
self.urdfLinks=[]
self.urdfJoints=[]
self.robotName = ""
self.linkNameToIndex={}
self.jointTypeToName={p.JOINT_FIXED:"JOINT_FIXED" ,\
p.JOINT_REVOLUTE:"JOINT_REVOLUTE",\
p.JOINT_PRISMATIC:"JOINT_PRISMATIC" }
def convertLinkFromMultiBody(self, bodyUid, linkIndex, urdfLink, physicsClientId):
dyn = p.getDynamicsInfo(bodyUid,linkIndex,physicsClientId=physicsClientId)
urdfLink.urdf_inertial.mass = dyn[0]
urdfLink.urdf_inertial.inertia_xxyyzz = dyn[2]
#todo
urdfLink.urdf_inertial.origin_xyz = dyn[3]
rpy = p.getEulerFromQuaternion(dyn[4])
urdfLink.urdf_inertial.origin_rpy = rpy
visualShapes = p.getVisualShapeData(bodyUid,physicsClientId=physicsClientId)
matIndex = 0
for v in visualShapes:
if (v[1]==linkIndex):
#print("visualShape base:",v)
urdfVisual = UrdfVisual()
urdfVisual.geom_type = v[2]
if (v[2]==p.GEOM_BOX):
urdfVisual.geom_extents = v[3]
if (v[2]==p.GEOM_SPHERE):
urdfVisual.geom_radius = v[3][0]
if (v[2]==p.GEOM_MESH):
urdfVisual.geom_meshfilename = v[4].decode("utf-8")
urdfVisual.geom_meshscale = v[3]
if (v[2]==p.GEOM_CYLINDER):
urdfVisual.geom_length=v[3][0]
urdfVisual.geom_radius=v[3][1]
if (v[2]==p.GEOM_CAPSULE):
urdfVisual.geom_length=v[3][0]
urdfVisual.geom_radius=v[3][1]
#print("Capsule length=",urdfVisual.geom_length)
#print("Capsule radius=",urdfVisual.geom_radius)
urdfVisual.origin_xyz = v[5]
urdfVisual.origin_rpy = p.getEulerFromQuaternion(v[6])
urdfVisual.material_rgba = v[7]
name = 'mat_{}_{}'.format(linkIndex,matIndex)
urdfVisual.material_name = name
urdfLink.urdf_visual_shapes.append(urdfVisual)
matIndex=matIndex+1
collisionShapes = p.getCollisionShapeData(bodyUid, linkIndex,physicsClientId=physicsClientId)
for v in collisionShapes:
#print("collisionShape base:",v)
urdfCollision = UrdfCollision()
print("geom type=",v[0])
urdfCollision.geom_type = v[2]
if (v[2]==p.GEOM_BOX):
urdfCollision.geom_extents = v[3]
if (v[2]==p.GEOM_SPHERE):
urdfCollision.geom_radius = v[3][0]
if (v[2]==p.GEOM_MESH):
urdfCollision.geom_meshfilename = v[4].decode("utf-8")
urdfCollision.geom_meshscale = v[3]
print("p.GEOM_MESH filename=",urdfCollision.geom_meshfilename)
if (v[2]==p.GEOM_CYLINDER):
urdfCollision.geom_length=v[3][0]
urdfCollision.geom_radius=v[3][1]
if (v[2]==p.GEOM_CAPSULE):
urdfCollision.geom_length=v[3][0]
urdfCollision.geom_radius=v[3][1]
print("Capsule length=",urdfCollision.geom_length)
print("Capsule radius=",urdfCollision.geom_radius)
pos,orn = p.multiplyTransforms(dyn[3],dyn[4],\
v[5], v[6])
urdfCollision.origin_xyz = pos
urdfCollision.origin_rpy = p.getEulerFromQuaternion(orn)
urdfLink.urdf_collision_shapes.append(urdfCollision)
def initializeFromBulletBody(self, bodyUid, physicsClientId):
self.initialize()
#always create a base link
baseLink = UrdfLink()
baseLinkIndex = -1
self.convertLinkFromMultiBody(bodyUid, baseLinkIndex, baseLink, physicsClientId)
baseLink.link_name = p.getBodyInfo(bodyUid, physicsClientId=physicsClientId)[0].decode("utf-8")
self.linkNameToIndex[baseLink.link_name]=len(self.urdfLinks)
self.urdfLinks.append(baseLink)
#print(visualShapes)
#optionally create child links and joints
for j in range(p.getNumJoints(bodyUid,physicsClientId=physicsClientId)):
jointInfo = p.getJointInfo(bodyUid,j,physicsClientId=physicsClientId)
urdfLink = UrdfLink()
self.convertLinkFromMultiBody(bodyUid, j, urdfLink,physicsClientId)
urdfLink.link_name = jointInfo[12].decode("utf-8")
self.linkNameToIndex[urdfLink.link_name]=len(self.urdfLinks)
self.urdfLinks.append(urdfLink)
urdfJoint = UrdfJoint()
urdfJoint.link = urdfLink
urdfJoint.joint_name = jointInfo[1].decode("utf-8")
urdfJoint.joint_type = jointInfo[2]
urdfJoint.joint_axis_xyz = jointInfo[13]
orgParentIndex = jointInfo[16]
if (orgParentIndex<0):
urdfJoint.parent_name = baseLink.link_name
else:
parentJointInfo = p.getJointInfo(bodyUid,orgParentIndex,physicsClientId=physicsClientId)
urdfJoint.parent_name = parentJointInfo[12].decode("utf-8")
urdfJoint.child_name = urdfLink.link_name
#todo, compensate for inertia/link frame offset
dynChild = p.getDynamicsInfo(bodyUid,j,physicsClientId=physicsClientId)
childInertiaPos = dynChild[3]
childInertiaOrn = dynChild[4]
parentCom2JointPos=jointInfo[14]
parentCom2JointOrn=jointInfo[15]
tmpPos,tmpOrn = p.multiplyTransforms(childInertiaPos,childInertiaOrn,parentCom2JointPos,parentCom2JointOrn)
tmpPosInv,tmpOrnInv = p.invertTransform(tmpPos,tmpOrn)
dynParent = p.getDynamicsInfo(bodyUid,orgParentIndex,physicsClientId=physicsClientId)
parentInertiaPos = dynParent[3]
parentInertiaOrn = dynParent[4]
pos,orn = p.multiplyTransforms(parentInertiaPos,parentInertiaOrn, tmpPosInv, tmpOrnInv)
pos,orn_unused=p.multiplyTransforms(parentInertiaPos,parentInertiaOrn, parentCom2JointPos,[0,0,0,1])
urdfJoint.joint_origin_xyz = pos
urdfJoint.joint_origin_rpy = p.getEulerFromQuaternion(orn)
self.urdfJoints.append(urdfJoint)
def writeInertial(self,file,urdfInertial, precision=5):
file.write("\t\t<inertial>\n")
str = '\t\t\t<origin rpy=\"{:.{prec}f} {:.{prec}f} {:.{prec}f}\" xyz=\"{:.{prec}f} {:.{prec}f} {:.{prec}f}\"/>\n'.format(\
urdfInertial.origin_rpy[0],urdfInertial.origin_rpy[1],urdfInertial.origin_rpy[2],\
urdfInertial.origin_xyz[0],urdfInertial.origin_xyz[1],urdfInertial.origin_xyz[2], prec=precision)
file.write(str)
str = '\t\t\t<mass value=\"{:.{prec}f}\"/>\n'.format(urdfInertial.mass,prec=precision)
file.write(str)
str = '\t\t\t<inertia ixx=\"{:.{prec}f}\" ixy=\"0\" ixz=\"0\" iyy=\"{:.{prec}f}\" iyz=\"0\" izz=\"{:.{prec}f}\"/>\n'.format(\
urdfInertial.inertia_xxyyzz[0],\
urdfInertial.inertia_xxyyzz[1],\
urdfInertial.inertia_xxyyzz[2],prec=precision)
file.write(str)
file.write("\t\t</inertial>\n")
def writeVisualShape(self,file,urdfVisual, precision=5):
file.write("\t\t<visual>\n")
str = '\t\t\t<origin rpy="{:.{prec}f} {:.{prec}f} {:.{prec}f}" xyz="{:.{prec}f} {:.{prec}f} {:.{prec}f}"/>\n'.format(\
urdfVisual.origin_rpy[0],urdfVisual.origin_rpy[1],urdfVisual.origin_rpy[2],
urdfVisual.origin_xyz[0],urdfVisual.origin_xyz[1],urdfVisual.origin_xyz[2], prec=precision)
file.write(str)
file.write("\t\t\t<geometry>\n")
if urdfVisual.geom_type == p.GEOM_BOX:
str = '\t\t\t\t<box size=\"{:.{prec}f} {:.{prec}f} {:.{prec}f}\"/>\n'.format(urdfVisual.geom_extents[0],\
urdfVisual.geom_extents[1],urdfVisual.geom_extents[2], prec=precision)
file.write(str)
if urdfVisual.geom_type == p.GEOM_SPHERE:
str = '\t\t\t\t<sphere radius=\"{:.{prec}f}\"/>\n'.format(urdfVisual.geom_radius,\
prec=precision)
file.write(str)
if urdfVisual.geom_type == p.GEOM_MESH:
str = '\t\t\t\t<mesh filename=\"{}\"/>\n'.format(urdfVisual.geom_meshfilename,\
prec=precision)
file.write(str)
if urdfVisual.geom_type == p.GEOM_CYLINDER:
str = '\t\t\t\t<cylinder length=\"{:.{prec}f}\" radius=\"{:.{prec}f}\"/>\n'.format(\
urdfVisual.geom_length, urdfVisual.geom_radius, prec=precision)
file.write(str)
if urdfVisual.geom_type == p.GEOM_CAPSULE:
str = '\t\t\t\t<capsule length=\"{:.{prec}f}\" radius=\"{:.{prec}f}\"/>\n'.format(\
urdfVisual.geom_length, urdfVisual.geom_radius, prec=precision)
file.write(str)
file.write("\t\t\t</geometry>\n")
str = '\t\t\t<material name=\"{}\">\n'.format(urdfVisual.material_name)
file.write(str)
str = '\t\t\t\t<color rgba="{:.{prec}f} {:.{prec}f} {:.{prec}f} {:.{prec}f}" />\n'.format(urdfVisual.material_rgba[0],\
urdfVisual.material_rgba[1],urdfVisual.material_rgba[2],urdfVisual.material_rgba[3],prec=precision)
file.write(str)
file.write("\t\t\t</material>\n")
file.write("\t\t</visual>\n")
def writeCollisionShape(self,file,urdfCollision, precision=5):
file.write("\t\t<collision>\n")
str = '\t\t\t<origin rpy="{:.{prec}f} {:.{prec}f} {:.{prec}f}" xyz="{:.{prec}f} {:.{prec}f} {:.{prec}f}"/>\n'.format(\
urdfCollision.origin_rpy[0],urdfCollision.origin_rpy[1],urdfCollision.origin_rpy[2],
urdfCollision.origin_xyz[0],urdfCollision.origin_xyz[1],urdfCollision.origin_xyz[2], prec=precision)
file.write(str)
file.write("\t\t\t<geometry>\n")
if urdfCollision.geom_type == p.GEOM_BOX:
str = '\t\t\t\t<box size=\"{:.{prec}f} {:.{prec}f} {:.{prec}f}\"/>\n'.format(urdfCollision.geom_extents[0],\
urdfCollision.geom_extents[1],urdfCollision.geom_extents[2], prec=precision)
file.write(str)
if urdfCollision.geom_type == p.GEOM_SPHERE:
str = '\t\t\t\t<sphere radius=\"{:.{prec}f}\"/>\n'.format(urdfCollision.geom_radius,\
prec=precision)
file.write(str)
if urdfCollision.geom_type == p.GEOM_MESH:
str = '\t\t\t\t<mesh filename=\"{}\"/>\n'.format(urdfCollision.geom_meshfilename,\
prec=precision)
file.write(str)
if urdfCollision.geom_type == p.GEOM_CYLINDER:
str = '\t\t\t\t<cylinder length=\"{:.{prec}f}\" radius=\"{:.{prec}f}\"/>\n'.format(\
urdfCollision.geom_length, urdfCollision.geom_radius, prec=precision)
file.write(str)
if urdfCollision.geom_type == p.GEOM_CAPSULE:
str = '\t\t\t\t<capsule length=\"{:.{prec}f}\" radius=\"{:.{prec}f}\"/>\n'.format(\
urdfCollision.geom_length, urdfCollision.geom_radius, prec=precision)
file.write(str)
file.write("\t\t\t</geometry>\n")
file.write("\t\t</collision>\n")
def writeLink(self, file, urdfLink):
file.write("\t<link name=\"")
file.write(urdfLink.link_name)
file.write("\">\n")
self.writeInertial(file,urdfLink.urdf_inertial)
for v in urdfLink.urdf_visual_shapes:
self.writeVisualShape(file,v)
for c in urdfLink.urdf_collision_shapes:
self.writeCollisionShape(file,c)
file.write("\t</link>\n")
def writeJoint(self, file, urdfJoint, precision=5):
jointTypeStr = "invalid"
if urdfJoint.joint_type == p.JOINT_REVOLUTE:
if urdfJoint.joint_upper_limit < urdfJoint.joint_lower_limit:
jointTypeStr = "continuous"
else:
jointTypeStr = "revolute"
if urdfJoint.joint_type == p.JOINT_FIXED:
jointTypeStr = "fixed"
if urdfJoint.joint_type == p.JOINT_PRISMATIC:
jointTypeStr = "prismatic"
str = '\t<joint name=\"{}\" type=\"{}\">\n'.format(urdfJoint.joint_name, jointTypeStr)
file.write(str)
str = '\t\t<parent link=\"{}\"/>\n'.format(urdfJoint.parent_name)
file.write(str)
str = '\t\t<child link=\"{}\"/>\n'.format(urdfJoint.child_name)
file.write(str)
if urdfJoint.joint_type == p.JOINT_PRISMATIC:
#todo: handle limits
lowerLimit=-0.5
upperLimit=0.5
str='<limit effort="1000.0" lower="{:.{prec}f}" upper="{:.{prec}f}" velocity="0.5"/>'.format(lowerLimit,upperLimit,prec=precision)
file.write(str)
file.write("\t\t<dynamics damping=\"1.0\" friction=\"0.0001\"/>\n")
str = '\t\t<origin xyz=\"{:.{prec}f} {:.{prec}f} {:.{prec}f}\"/>\n'.format(urdfJoint.joint_origin_xyz[0],\
urdfJoint.joint_origin_xyz[1],urdfJoint.joint_origin_xyz[2], prec=precision)
file.write(str)
str = '\t\t<axis xyz=\"{:.{prec}f} {:.{prec}f} {:.{prec}f}\"/>\n'.format(urdfJoint.joint_axis_xyz[0],\
urdfJoint.joint_axis_xyz[1],urdfJoint.joint_axis_xyz[2], prec=precision)
file.write(str)
file.write("\t</joint>\n")
def saveUrdf(self, fileName):
file = open(fileName,"w")
file.write("<?xml version=\"0.0\" ?>\n")
file.write("<robot name=\"")
file.write(self.robotName)
file.write("\">\n")
for link in self.urdfLinks:
self.writeLink(file,link)
for joint in self.urdfJoints:
self.writeJoint(file,joint)
file.write("</robot>\n")
file.close()
#def addLink(...)
def createMultiBody(self, basePosition=[0,0,0],physicsClientId=0):
#assume link[0] is base
if (len(self.urdfLinks)==0):
return -1
base = self.urdfLinks[0]
#v.tmp_collision_shape_ids=[]
baseMass = base.urdf_inertial.mass
print("baseMass=",baseMass)
baseCollisionShapeIndex = -1
baseShapeTypeArray=[]
baseRadiusArray=[]
baseHalfExtentsArray=[]
lengthsArray=[]
fileNameArray=[]
meshScaleArray=[]
basePositionsArray=[]
baseOrientationsArray=[]
for v in base.urdf_collision_shapes:
print("base v.origin_xyz=",v.origin_xyz)
print("base v.origin_rpy=",v.origin_rpy)
shapeType = v.geom_type
baseShapeTypeArray.append(shapeType)
baseHalfExtentsArray.append([0.5*v.geom_extents[0],0.5*v.geom_extents[1],0.5*v.geom_extents[2]])
baseRadiusArray.append(v.geom_radius)
lengthsArray.append(v.geom_length)
fileNameArray.append(v.geom_meshfilename)
meshScaleArray.append(v.geom_meshscale)
basePositionsArray.append(v.origin_xyz)
print("v.origin_rpy=",v.origin_rpy)
orn=p.getQuaternionFromEuler(v.origin_rpy)
baseOrientationsArray.append(orn)
print("baseHalfExtentsArray=",baseHalfExtentsArray)
if (len(baseShapeTypeArray)):
baseCollisionShapeIndex = p.createCollisionShapeArray(shapeTypes=baseShapeTypeArray,
radii=baseRadiusArray,
halfExtents=baseHalfExtentsArray,
lengths=lengthsArray,
fileNames=fileNameArray,
meshScales=meshScaleArray,
collisionFramePositions=basePositionsArray,
collisionFrameOrientations=baseOrientationsArray,
physicsClientId=physicsClientId)
print("baseCollisionShapeIndex=",baseCollisionShapeIndex)
linkMasses=[]
linkCollisionShapeIndices=[]
linkVisualShapeIndices=[]
linkPositions=[]
linkOrientations=[]
linkMeshScaleArray=[]
linkInertialFramePositions=[]
linkInertialFrameOrientations=[]
linkParentIndices=[]
linkJointTypes=[]
linkJointAxis=[]
for joint in self.urdfJoints:
link = joint.link
linkMass = link.urdf_inertial.mass
print("linkMass=",linkMass)
linkCollisionShapeIndex=-1
linkVisualShapeIndex=-1
linkPosition=[0,0,0]
linkOrientation=[0,0,0]
linkInertialFramePosition=[0,0,0]
linkInertialFrameOrientation=[0,0,0]
linkParentIndex=self.linkNameToIndex[joint.parent_name]
print("parentId=",linkParentIndex)
linkJointType=joint.joint_type
print("linkJointType=",linkJointType, self.jointTypeToName[linkJointType] )
linkJointAx = joint.joint_axis_xyz
linkShapeTypeArray=[]
linkRadiusArray=[]
linkHalfExtentsArray=[]
lengthsArray=[]
fileNameArray=[]
linkPositionsArray=[]
linkOrientationsArray=[]
for v in link.urdf_collision_shapes:
print("link v.origin_xyz=",v.origin_xyz)
print("link v.origin_rpy=",v.origin_rpy)
shapeType = v.geom_type
linkShapeTypeArray.append(shapeType)
linkHalfExtentsArray.append([0.5*v.geom_extents[0],0.5*v.geom_extents[1],0.5*v.geom_extents[2]])
linkRadiusArray.append(v.geom_radius)
lengthsArray.append(v.geom_length)
fileNameArray.append(v.geom_meshfilename)
linkMeshScaleArray.append(v.geom_meshscale)
linkPositionsArray.append(v.origin_xyz)
linkOrientationsArray.append(p.getQuaternionFromEuler(v.origin_rpy))
print("linkHalfExtentsArray=",linkHalfExtentsArray)
if (len(linkShapeTypeArray)):
linkCollisionShapeIndex = p.createCollisionShapeArray(shapeTypes=linkShapeTypeArray,
radii=linkRadiusArray,
halfExtents=linkHalfExtentsArray,
lengths=lengthsArray,
fileNames=fileNameArray,
meshScales=linkMeshScaleArray,
collisionFramePositions=linkPositionsArray,
collisionFrameOrientations=linkOrientationsArray,
physicsClientId=physicsClientId)
linkMasses.append(linkMass)
linkCollisionShapeIndices.append(linkCollisionShapeIndex)
linkVisualShapeIndices.append(linkVisualShapeIndex)
linkPositions.append(joint.joint_origin_xyz)
linkOrientations.append(p.getQuaternionFromEuler(joint.joint_origin_rpy))
linkInertialFramePositions.append(link.urdf_inertial.origin_xyz)
linkInertialFrameOrientations.append(p.getQuaternionFromEuler(link.urdf_inertial.origin_rpy))
linkParentIndices.append(linkParentIndex)
linkJointTypes.append(joint.joint_type)
linkJointAxis.append(joint.joint_axis_xyz)
print("\n\n\nlinkMasses=",linkMasses)
obUid = p.createMultiBody(baseMass,\
baseCollisionShapeIndex= baseCollisionShapeIndex,
basePosition=basePosition,
baseInertialFramePosition=base.urdf_inertial.origin_xyz,
baseInertialFrameOrientation=base.urdf_inertial.origin_rpy,
linkMasses=linkMasses,
linkCollisionShapeIndices=linkCollisionShapeIndices,
linkVisualShapeIndices=linkVisualShapeIndices,
linkPositions=linkPositions,
linkOrientations=linkOrientations,
linkInertialFramePositions=linkInertialFramePositions,
linkInertialFrameOrientations=linkInertialFrameOrientations,
linkParentIndices=linkParentIndices,
linkJointTypes=linkJointTypes,
linkJointAxis=linkJointAxis,
physicsClientId=physicsClientId)
return obUid
#create visual and collision shapes
#for link in self.urdfLinks:
# for v in link.urdf_visual_shapes:
# v.tmp_visual_shape_ids=[]
# shapeType = v[0]
# if shapeType==p.GEOM_BOX:
# p.createVisualShape(physicsClientId=physId)
#for joint in self.urdfJoints:
# self.writeJoint(file,joint)
def __del__(self):
pass
##########################################
org2 = p.connect(p.DIRECT)
org = p.connect(p.SHARED_MEMORY)
if (org<0):
org = p.connect(p.DIRECT)
gui = p.connect(p.GUI)
p.resetSimulation(physicsClientId=org)
#door.urdf, hinge.urdf, duck_vhacd.urdf, r2d2.urdf, quadruped/quadruped.urdf
mb = p.loadURDF("r2d2.urdf", physicsClientId=org)
for i in range(p.getNumJoints(mb,physicsClientId=org)):
p.setJointMotorControl2(mb,i,p.VELOCITY_CONTROL,force=0,physicsClientId=org)
#print("numJoints:",p.getNumJoints(mb,physicsClientId=org))
#print("base name:",p.getBodyInfo(mb,physicsClientId=org))
#for i in range(p.getNumJoints(mb,physicsClientId=org)):
# print("jointInfo(",i,"):",p.getJointInfo(mb,i,physicsClientId=org))
# print("linkState(",i,"):",p.getLinkState(mb,i,physicsClientId=org))
parser = UrdfEditor()
parser.initializeFromBulletBody(mb,physicsClientId=org)
parser.saveUrdf("test.urdf")
if (1):
print("\ncreatingMultiBody...................n")
obUid = parser.createMultiBody(physicsClientId=gui)
parser2 = UrdfEditor()
print("\n###########################################\n")
parser2.initializeFromBulletBody(obUid,physicsClientId=gui)
parser2.saveUrdf("test2.urdf")
for i in range (p.getNumJoints(obUid, physicsClientId=gui)):
p.setJointMotorControl2(obUid,i,p.VELOCITY_CONTROL,targetVelocity=0,force=1,physicsClientId=gui)
print(p.getJointInfo(obUid,i,physicsClientId=gui))
parser=0
p.setRealTimeSimulation(1,physicsClientId=gui)
while (p.getConnectionInfo(physicsClientId=gui)["isConnected"]):
p.stepSimulation(physicsClientId=gui)
time.sleep(0.01)

View File

@@ -66,6 +66,7 @@ b3PhysicsClientHandle getPhysicsClient(int physicsClientId)
return 0;
}
static double pybullet_internalGetFloatFromSequence(PyObject* seq, int index)
{
double v = 0.0;
@@ -153,6 +154,7 @@ static int pybullet_internalSetVector(PyObject* objVec, float vector[3])
if (seq)
{
len = PySequence_Size(objVec);
assert(len == 3);
if (len == 3)
{
for (i = 0; i < len; i++)
@@ -180,6 +182,7 @@ static int pybullet_internalSetVectord(PyObject* obVec, double vector[3])
if (seq)
{
len = PySequence_Size(obVec);
assert(len == 3);
if (len == 3)
{
for (i = 0; i < len; i++)
@@ -913,13 +916,12 @@ static PyObject* pybullet_getDynamicsInfo(PyObject* self, PyObject* args, PyObje
{
int bodyUniqueId = -1;
int linkIndex = -2;
int flags = 0;
b3PhysicsClientHandle sm = 0;
int physicsClientId = 0;
static char* kwlist[] = {"bodyUniqueId", "linkIndex", "flags", "physicsClientId", NULL};
if (!PyArg_ParseTupleAndKeywords(args, keywds, "ii|ii", kwlist, &bodyUniqueId, &linkIndex, &flags, &physicsClientId))
static char* kwlist[] = {"bodyUniqueId", "linkIndex", "physicsClientId", NULL};
if (!PyArg_ParseTupleAndKeywords(args, keywds, "ii|i", kwlist, &bodyUniqueId, &linkIndex, &physicsClientId))
{
return NULL;
}
@@ -934,11 +936,7 @@ static PyObject* pybullet_getDynamicsInfo(PyObject* self, PyObject* args, PyObje
b3SharedMemoryCommandHandle cmd_handle;
b3SharedMemoryStatusHandle status_handle;
struct b3DynamicsInfo info;
int numFields = 2;
if (flags & eDYNAMICS_INFO_REPORT_INERTIA)
{
numFields++;
}
if (bodyUniqueId < 0)
{
@@ -959,25 +957,41 @@ static PyObject* pybullet_getDynamicsInfo(PyObject* self, PyObject* args, PyObje
return NULL;
}
if (b3GetDynamicsInfo(status_handle, &info))
{
int numFields = 10;
PyObject* pyDynamicsInfo = PyTuple_New(numFields);
PyTuple_SetItem(pyDynamicsInfo, 0, PyFloat_FromDouble(info.m_mass));
PyTuple_SetItem(pyDynamicsInfo, 1, PyFloat_FromDouble(info.m_lateralFrictionCoeff));
if (flags & eDYNAMICS_INFO_REPORT_INERTIA)
{
PyObject* pyInertiaDiag = PyTuple_New(3);
PyTuple_SetItem(pyInertiaDiag,0,PyFloat_FromDouble(info.m_localInertialDiagonal[0]));
PyTuple_SetItem(pyInertiaDiag,1,PyFloat_FromDouble(info.m_localInertialDiagonal[1]));
PyTuple_SetItem(pyInertiaDiag,2,PyFloat_FromDouble(info.m_localInertialDiagonal[2]));
PyTuple_SetItem(pyInertiaDiag, 0, PyFloat_FromDouble(info.m_localInertialDiagonal[0]));
PyTuple_SetItem(pyInertiaDiag, 1, PyFloat_FromDouble(info.m_localInertialDiagonal[1]));
PyTuple_SetItem(pyInertiaDiag, 2, PyFloat_FromDouble(info.m_localInertialDiagonal[2]));
PyTuple_SetItem(pyDynamicsInfo, 2, pyInertiaDiag);
}
{
PyObject* pyInertiaPos= PyTuple_New(3);
PyTuple_SetItem(pyInertiaPos, 0, PyFloat_FromDouble(info.m_localInertialFrame[0]));
PyTuple_SetItem(pyInertiaPos, 1, PyFloat_FromDouble(info.m_localInertialFrame[1]));
PyTuple_SetItem(pyInertiaPos, 2, PyFloat_FromDouble(info.m_localInertialFrame[2]));
PyTuple_SetItem(pyDynamicsInfo, 3, pyInertiaPos);
}
{
PyObject* pyInertiaOrn= PyTuple_New(4);
PyTuple_SetItem(pyInertiaOrn, 0, PyFloat_FromDouble(info.m_localInertialFrame[3]));
PyTuple_SetItem(pyInertiaOrn, 1, PyFloat_FromDouble(info.m_localInertialFrame[4]));
PyTuple_SetItem(pyInertiaOrn, 2, PyFloat_FromDouble(info.m_localInertialFrame[5]));
PyTuple_SetItem(pyInertiaOrn, 3, PyFloat_FromDouble(info.m_localInertialFrame[6]));
PyTuple_SetItem(pyDynamicsInfo, 4, pyInertiaOrn);
}
PyTuple_SetItem(pyDynamicsInfo, 5, PyFloat_FromDouble(info.m_restitution));
PyTuple_SetItem(pyDynamicsInfo, 6, PyFloat_FromDouble(info.m_rollingFrictionCoeff));
PyTuple_SetItem(pyDynamicsInfo, 7, PyFloat_FromDouble(info.m_spinningFrictionCoeff));
PyTuple_SetItem(pyDynamicsInfo, 8, PyFloat_FromDouble(info.m_contactDamping));
PyTuple_SetItem(pyDynamicsInfo, 9, PyFloat_FromDouble(info.m_contactStiffness));
return pyDynamicsInfo;
}
}
@@ -3128,7 +3142,7 @@ static PyObject* pybullet_getJointInfo(PyObject* self, PyObject* args, PyObject*
int bodyUniqueId = -1;
int jointIndex = -1;
int jointInfoSize = 13; // size of struct b3JointInfo
int jointInfoSize = 17; // size of struct b3JointInfo
b3PhysicsClientHandle sm = 0;
int physicsClientId = 0;
static char* kwlist[] = {"bodyUniqueId", "jointIndex", "physicsClientId", NULL};
@@ -3199,6 +3213,30 @@ static PyObject* pybullet_getJointInfo(PyObject* self, PyObject* args, PyObject*
PyTuple_SetItem(pyListJointInfo, 12,
PyString_FromString("not available"));
}
{
PyObject* axis = PyTuple_New(3);
PyTuple_SetItem(axis, 0, PyFloat_FromDouble(info.m_jointAxis[0]));
PyTuple_SetItem(axis, 1, PyFloat_FromDouble(info.m_jointAxis[1]));
PyTuple_SetItem(axis, 2, PyFloat_FromDouble(info.m_jointAxis[2]));
PyTuple_SetItem(pyListJointInfo, 13, axis);
}
{
PyObject* pos = PyTuple_New(3);
PyTuple_SetItem(pos, 0, PyFloat_FromDouble(info.m_parentFrame[0]));
PyTuple_SetItem(pos, 1, PyFloat_FromDouble(info.m_parentFrame[1]));
PyTuple_SetItem(pos, 2, PyFloat_FromDouble(info.m_parentFrame[2]));
PyTuple_SetItem(pyListJointInfo, 14, pos);
}
{
PyObject* orn = PyTuple_New(4);
PyTuple_SetItem(orn, 0, PyFloat_FromDouble(info.m_parentFrame[3]));
PyTuple_SetItem(orn, 1, PyFloat_FromDouble(info.m_parentFrame[4]));
PyTuple_SetItem(orn, 2, PyFloat_FromDouble(info.m_parentFrame[5]));
PyTuple_SetItem(orn, 3, PyFloat_FromDouble(info.m_parentFrame[6]));
PyTuple_SetItem(pyListJointInfo, 15, orn);
}
PyTuple_SetItem(pyListJointInfo, 16, PyInt_FromLong(info.m_parentIndex));
return pyListJointInfo;
}
@@ -4834,6 +4872,107 @@ static PyObject* pybullet_setDebugObjectColor(PyObject* self, PyObject* args, Py
return Py_None;
}
static PyObject* pybullet_getCollisionShapeData(PyObject* self, PyObject* args, PyObject* keywds)
{
int objectUniqueId = -1;
b3SharedMemoryCommandHandle commandHandle;
b3SharedMemoryStatusHandle statusHandle;
struct b3CollisionShapeInformation collisionShapeInfo;
int statusType;
int i;
int linkIndex;
PyObject* pyResultList = 0;
int physicsClientId = 0;
b3PhysicsClientHandle sm = 0;
static char* kwlist[] = { "objectUniqueId", "linkIndex", "physicsClientId", NULL };
if (!PyArg_ParseTupleAndKeywords(args, keywds, "ii|i", kwlist, &objectUniqueId, &linkIndex, &physicsClientId))
{
return NULL;
}
sm = getPhysicsClient(physicsClientId);
if (sm == 0)
{
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
{
commandHandle = b3InitRequestCollisionShapeInformation(sm, objectUniqueId, linkIndex);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, commandHandle);
statusType = b3GetStatusType(statusHandle);
if (statusType == CMD_COLLISION_SHAPE_INFO_COMPLETED)
{
b3GetCollisionShapeInformation(sm, &collisionShapeInfo);
pyResultList = PyTuple_New(collisionShapeInfo.m_numCollisionShapes);
for (i = 0; i < collisionShapeInfo.m_numCollisionShapes; i++)
{
PyObject* collisionShapeObList = PyTuple_New(7);
PyObject* item;
item = PyInt_FromLong(collisionShapeInfo.m_collisionShapeData[i].m_objectUniqueId);
PyTuple_SetItem(collisionShapeObList, 0, item);
item = PyInt_FromLong(collisionShapeInfo.m_collisionShapeData[i].m_linkIndex);
PyTuple_SetItem(collisionShapeObList, 1, item);
item = PyInt_FromLong(collisionShapeInfo.m_collisionShapeData[i].m_collisionGeometryType);
PyTuple_SetItem(collisionShapeObList, 2, item);
{
PyObject* vec = PyTuple_New(3);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_dimensions[0]);
PyTuple_SetItem(vec, 0, item);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_dimensions[1]);
PyTuple_SetItem(vec, 1, item);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_dimensions[2]);
PyTuple_SetItem(vec, 2, item);
PyTuple_SetItem(collisionShapeObList, 3, vec);
}
item = PyString_FromString(collisionShapeInfo.m_collisionShapeData[i].m_meshAssetFileName);
PyTuple_SetItem(collisionShapeObList, 4, item);
{
PyObject* vec = PyTuple_New(3);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_localCollisionFrame[0]);
PyTuple_SetItem(vec, 0, item);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_localCollisionFrame[1]);
PyTuple_SetItem(vec, 1, item);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_localCollisionFrame[2]);
PyTuple_SetItem(vec, 2, item);
PyTuple_SetItem(collisionShapeObList, 5, vec);
}
{
PyObject* vec = PyTuple_New(4);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_localCollisionFrame[3]);
PyTuple_SetItem(vec, 0, item);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_localCollisionFrame[4]);
PyTuple_SetItem(vec, 1, item);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_localCollisionFrame[5]);
PyTuple_SetItem(vec, 2, item);
item = PyFloat_FromDouble(collisionShapeInfo.m_collisionShapeData[i].m_localCollisionFrame[6]);
PyTuple_SetItem(vec, 3, item);
PyTuple_SetItem(collisionShapeObList, 6, vec);
}
PyTuple_SetItem(pyResultList, i, collisionShapeObList);
}
return pyResultList;
}
else
{
PyErr_SetString(SpamError, "Error receiving collision shape info");
return NULL;
}
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject* pybullet_getVisualShapeData(PyObject* self, PyObject* args, PyObject* keywds)
{
int objectUniqueId = -1;
@@ -5564,7 +5703,7 @@ static PyObject* pybullet_createCollisionShape(PyObject* self, PyObject* args, P
if (collisionFrameOrientationObj)
{
pybullet_internalSetVectord(collisionFrameOrientationObj,collisionFrameOrientation);
pybullet_internalSetVector4d(collisionFrameOrientationObj,collisionFrameOrientation);
}
b3CreateVisualShapeSetChildTransform(commandHandle, shapeIndex, collisionFramePosition,collisionFrameOrientation);
@@ -5582,6 +5721,233 @@ static PyObject* pybullet_createCollisionShape(PyObject* self, PyObject* args, P
return NULL;
}
static PyObject* pybullet_createCollisionShapeArray(PyObject* self, PyObject* args, PyObject* keywds)
{
int physicsClientId = 0;
b3PhysicsClientHandle sm = 0;
b3SharedMemoryStatusHandle statusHandle;
int statusType;
PyObject* shapeTypeArray = 0;
PyObject* radiusArray = 0;
PyObject* halfExtentsObjArray = 0;
PyObject* lengthArray = 0;
PyObject* fileNameArray = 0;
PyObject* meshScaleObjArray = 0;
PyObject* planeNormalObjArray = 0;
PyObject* flagsArray = 0;
PyObject* collisionFramePositionObjArray = 0;
PyObject* collisionFrameOrientationObjArray = 0;
static char* kwlist[] = { "shapeTypes", "radii", "halfExtents", "lengths", "fileNames", "meshScales", "planeNormals",
"flags", "collisionFramePositions", "collisionFrameOrientations", "physicsClientId", NULL };
if (!PyArg_ParseTupleAndKeywords(args, keywds, "O|OOOOOOOOOi", kwlist,
&shapeTypeArray, &radiusArray, &halfExtentsObjArray, &lengthArray, &fileNameArray, &meshScaleObjArray, &planeNormalObjArray, &flagsArray, &collisionFramePositionObjArray, &collisionFrameOrientationObjArray, &physicsClientId))
{
return NULL;
}
sm = getPhysicsClient(physicsClientId);
if (sm == 0)
{
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
b3SharedMemoryCommandHandle commandHandle = b3CreateCollisionShapeCommandInit(sm);
{
int numShapeTypes = 0;
int numRadius = 0;
int numHalfExtents = 0;
int numLengths = 0;
int numFileNames = 0;
int numMeshScales = 0;
int numPlaneNormals = 0;
int numFlags = 0;
int numPositions = 0;
int numOrientations = 0;
int s;
PyObject* shapeTypeArraySeq = shapeTypeArray?PySequence_Fast(shapeTypeArray, "expected a sequence of shape types"):0;
PyObject* radiusArraySeq = radiusArray?PySequence_Fast(radiusArray, "expected a sequence of radii"):0;
PyObject* halfExtentsArraySeq = halfExtentsObjArray?PySequence_Fast(halfExtentsObjArray, "expected a sequence of half extents"):0;
PyObject* lengthArraySeq = lengthArray ?PySequence_Fast(lengthArray, "expected a sequence of lengths"):0;
PyObject* fileNameArraySeq = fileNameArray?PySequence_Fast(fileNameArray, "expected a sequence of filename"):0;
PyObject* meshScaleArraySeq = meshScaleObjArray?PySequence_Fast(meshScaleObjArray, "expected a sequence of mesh scale"):0;
PyObject* planeNormalArraySeq = planeNormalObjArray?PySequence_Fast(planeNormalObjArray, "expected a sequence of plane normal"):0;
PyObject* flagsArraySeq = flagsArray?PySequence_Fast(flagsArray, "expected a sequence of flags"):0;
PyObject* positionArraySeq = collisionFramePositionObjArray?PySequence_Fast(collisionFramePositionObjArray, "expected a sequence of collision frame positions"):0;
PyObject* orientationArraySeq = collisionFrameOrientationObjArray?PySequence_Fast(collisionFrameOrientationObjArray, "expected a sequence of collision frame orientations"):0;
if (shapeTypeArraySeq == 0)
{
PyErr_SetString(SpamError, "expected a sequence of shape types");
return NULL;
}
numShapeTypes = shapeTypeArray?PySequence_Size(shapeTypeArray):0;
numRadius = radiusArraySeq?PySequence_Size(radiusArraySeq):0;
numHalfExtents = halfExtentsArraySeq?PySequence_Size(halfExtentsArraySeq):0;
numLengths = lengthArraySeq?PySequence_Size(lengthArraySeq):0;
numFileNames = fileNameArraySeq?PySequence_Size(fileNameArraySeq):0;
numMeshScales = meshScaleArraySeq?PySequence_Size(meshScaleArraySeq):0;
numPlaneNormals = planeNormalArraySeq?PySequence_Size(planeNormalArraySeq):0;
for (s=0;s<numShapeTypes;s++)
{
int shapeType = pybullet_internalGetIntFromSequence(shapeTypeArraySeq, s);
if (shapeType >= GEOM_SPHERE)
{
int shapeIndex = -1;
if (shapeType == GEOM_SPHERE && s <= numRadius)
{
double radius = pybullet_internalGetFloatFromSequence(radiusArraySeq, s);
if (radius > 0)
{
shapeIndex = b3CreateCollisionShapeAddSphere(commandHandle, radius);
}
}
if (shapeType == GEOM_BOX)
{
PyObject* halfExtentsObj = 0;
double halfExtents[3] = { 1, 1, 1 };
if (halfExtentsArraySeq && s<= numHalfExtents)
{
if (PyList_Check(halfExtentsArraySeq))
{
halfExtentsObj = PyList_GET_ITEM(halfExtentsArraySeq, s);
}
else
{
halfExtentsObj = PyTuple_GET_ITEM(halfExtentsArraySeq, s);
}
}
pybullet_internalSetVectord(halfExtentsObj, halfExtents);
shapeIndex = b3CreateCollisionShapeAddBox(commandHandle, halfExtents);
}
if (shapeType == GEOM_CAPSULE && s<=numRadius)
{
double radius = pybullet_internalGetFloatFromSequence(radiusArraySeq, s);
double height = pybullet_internalGetFloatFromSequence(lengthArraySeq, s);
if (radius > 0 && height >= 0)
{
shapeIndex = b3CreateCollisionShapeAddCapsule(commandHandle, radius, height);
}
}
if (shapeType == GEOM_CYLINDER && s <= numRadius && s<numLengths)
{
double radius = pybullet_internalGetFloatFromSequence(radiusArraySeq, s);
double height = pybullet_internalGetFloatFromSequence(lengthArraySeq, s);
if (radius > 0 && height >= 0)
{
shapeIndex = b3CreateCollisionShapeAddCylinder(commandHandle, radius, height);
}
}
if (shapeType == GEOM_MESH)
{
double meshScale[3] = { 1, 1, 1 };
PyObject* meshScaleObj = meshScaleArraySeq?PyList_GET_ITEM(meshScaleArraySeq, s):0;
PyObject* fileNameObj = fileNameArraySeq?PyList_GET_ITEM(fileNameArraySeq, s):0;
const char* fileName = 0;
if (fileNameObj)
{
#if PY_MAJOR_VERSION >= 3
PyObject* ob = PyUnicode_AsASCIIString(fileNameObj);
fileName = PyBytes_AS_STRING(ob);
#else
fileName = PyString_AsString(fileNameObj);
#endif
}
if (meshScaleObj)
{
pybullet_internalSetVectord(meshScaleObj, meshScale);
}
if (fileName)
{
shapeIndex = b3CreateCollisionShapeAddMesh(commandHandle, fileName, meshScale);
}
}
if (shapeType == GEOM_PLANE)
{
PyObject* planeNormalObj = planeNormalArraySeq?PyList_GET_ITEM(planeNormalArraySeq, s):0;
double planeNormal[3];
double planeConstant = 0;
pybullet_internalSetVectord(planeNormalObj, planeNormal);
shapeIndex = b3CreateCollisionShapeAddPlane(commandHandle, planeNormal, planeConstant);
}
if (flagsArraySeq)
{
int flags = pybullet_internalGetIntFromSequence(flagsArraySeq, s);
b3CreateCollisionSetFlag(commandHandle, shapeIndex, flags);
}
if (positionArraySeq || orientationArraySeq)
{
PyObject* collisionFramePositionObj = positionArraySeq?PyList_GET_ITEM(positionArraySeq, s):0;
PyObject* collisionFrameOrientationObj = orientationArraySeq?PyList_GET_ITEM(orientationArraySeq, s):0;
double collisionFramePosition[3] = { 0, 0, 0 };
double collisionFrameOrientation[4] = { 0, 0, 0, 1 };
if (collisionFramePositionObj)
{
pybullet_internalSetVectord(collisionFramePositionObj, collisionFramePosition);
}
if (collisionFrameOrientationObj)
{
pybullet_internalSetVector4d(collisionFrameOrientationObj, collisionFrameOrientation);
}
if (shapeIndex >= 0)
{
b3CreateCollisionShapeSetChildTransform(commandHandle, shapeIndex, collisionFramePosition, collisionFrameOrientation);
}
}
}
}
if (shapeTypeArraySeq)
Py_DECREF(shapeTypeArraySeq);
if (radiusArraySeq)
Py_DECREF(radiusArraySeq);
if (halfExtentsArraySeq)
Py_DECREF(halfExtentsArraySeq);
if (lengthArraySeq)
Py_DECREF(lengthArraySeq);
if (fileNameArraySeq)
Py_DECREF(fileNameArraySeq);
if (meshScaleArraySeq)
Py_DECREF(meshScaleArraySeq);
if (planeNormalArraySeq)
Py_DECREF(planeNormalArraySeq);
if (flagsArraySeq)
Py_DECREF(flagsArraySeq);
if (positionArraySeq)
Py_DECREF(positionArraySeq);
if (orientationArraySeq)
Py_DECREF(orientationArraySeq);
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, commandHandle);
statusType = b3GetStatusType(statusHandle);
if (statusType == CMD_CREATE_COLLISION_SHAPE_COMPLETED)
{
int uid = b3GetStatusCollisionShapeUniqueId(statusHandle);
PyObject* ob = PyLong_FromLong(uid);
return ob;
}
}
PyErr_SetString(SpamError, "createCollisionShapeArray failed.");
return NULL;
}
static PyObject* pybullet_createVisualShape(PyObject* self, PyObject* args, PyObject* keywds)
{
@@ -5591,7 +5957,7 @@ static PyObject* pybullet_createVisualShape(PyObject* self, PyObject* args, PyOb
int shapeType=-1;
double radius=0.5;
double height = 1;
double length = 1;
PyObject* meshScaleObj=0;
double meshScale[3] = {1,1,1};
PyObject* planeNormalObj=0;
@@ -5613,9 +5979,9 @@ static PyObject* pybullet_createVisualShape(PyObject* self, PyObject* args, PyOb
PyObject* halfExtentsObj=0;
static char* kwlist[] = {"shapeType","radius","halfExtents", "height", "fileName", "meshScale", "planeNormal", "flags", "rgbaColor", "specularColor", "visualFramePosition", "visualFrameOrientation", "physicsClientId", NULL};
static char* kwlist[] = {"shapeType","radius","halfExtents", "length", "fileName", "meshScale", "planeNormal", "flags", "rgbaColor", "specularColor", "visualFramePosition", "visualFrameOrientation", "physicsClientId", NULL};
if (!PyArg_ParseTupleAndKeywords(args, keywds, "i|dOdsOOiOOOOi", kwlist,
&shapeType, &radius,&halfExtentsObj, &height, &fileName, &meshScaleObj, &planeNormalObj, &flags, &rgbaColorObj, &specularColorObj, &visualFramePositionObj, &visualFrameOrientationObj, &physicsClientId))
&shapeType, &radius,&halfExtentsObj, &length, &fileName, &meshScaleObj, &planeNormalObj, &flags, &rgbaColorObj, &specularColorObj, &visualFramePositionObj, &visualFrameOrientationObj, &physicsClientId))
{
return NULL;
}
@@ -5645,13 +6011,13 @@ static PyObject* pybullet_createVisualShape(PyObject* self, PyObject* args, PyOb
shapeIndex = b3CreateVisualShapeAddBox(commandHandle,halfExtents);
}
if (shapeType==GEOM_CAPSULE && radius>0 && height>=0)
if (shapeType==GEOM_CAPSULE && radius>0 && length>=0)
{
shapeIndex = b3CreateVisualShapeAddCapsule(commandHandle,radius,height);
shapeIndex = b3CreateVisualShapeAddCapsule(commandHandle,radius,length);
}
if (shapeType==GEOM_CYLINDER && radius>0 && height>=0)
if (shapeType==GEOM_CYLINDER && radius>0 && length>=0)
{
shapeIndex = b3CreateVisualShapeAddCylinder(commandHandle,radius,height);
shapeIndex = b3CreateVisualShapeAddCylinder(commandHandle,radius,length);
}
if (shapeType==GEOM_MESH && fileName)
{
@@ -5692,7 +6058,7 @@ static PyObject* pybullet_createVisualShape(PyObject* self, PyObject* args, PyOb
if (visualFrameOrientationObj)
{
pybullet_internalSetVectord(visualFrameOrientationObj,visualFrameOrientation);
pybullet_internalSetVector4d(visualFrameOrientationObj,visualFrameOrientation);
}
b3CreateVisualShapeSetChildTransform(commandHandle, shapeIndex, visualFramePosition,visualFrameOrientation);
@@ -7944,6 +8310,9 @@ static PyMethodDef SpamMethods[] = {
{"createCollisionShape", (PyCFunction)pybullet_createCollisionShape, METH_VARARGS | METH_KEYWORDS,
"Create a collision shape. Returns a non-negative (int) unique id, if successfull, negative otherwise."},
{ "createCollisionShapeArray", (PyCFunction)pybullet_createCollisionShapeArray, METH_VARARGS | METH_KEYWORDS,
"Create a collision shape. Returns a non-negative (int) unique id, if successfull, negative otherwise." },
{"createVisualShape", (PyCFunction)pybullet_createVisualShape, METH_VARARGS | METH_KEYWORDS,
"Create a visual shape. Returns a non-negative (int) unique id, if successfull, negative otherwise."},
@@ -8152,6 +8521,9 @@ static PyMethodDef SpamMethods[] = {
{"getVisualShapeData", (PyCFunction)pybullet_getVisualShapeData, METH_VARARGS | METH_KEYWORDS,
"Return the visual shape information for one object."},
{ "getCollisionShapeData", (PyCFunction)pybullet_getCollisionShapeData, METH_VARARGS | METH_KEYWORDS,
"Return the collision shape information for one object." },
{"changeVisualShape", (PyCFunction)pybullet_changeVisualShape, METH_VARARGS | METH_KEYWORDS,
"Change part of the visual shape information for one object."},
@@ -8370,8 +8742,7 @@ initpybullet(void)
PyModule_AddIntConstant(m, "JOINT_POINT2POINT", ePoint2PointType); // user read
PyModule_AddIntConstant(m, "JOINT_GEAR", eGearType); // user read
PyModule_AddIntConstant(m, "DYNAMICS_INFO_REPORT_INERTIA", eDYNAMICS_INFO_REPORT_INERTIA); // report local inertia in 'getDynamicsInfo'
PyModule_AddIntConstant(m, "SENSOR_FORCE_TORQUE", eSensorForceTorqueType); // user read
PyModule_AddIntConstant(m, "TORQUE_CONTROL", CONTROL_MODE_TORQUE);