Contribution to add optional double precision floating point support. Define BT_USE_DOUBLE_PRECISION for all involved libraries/apps.

This commit is contained in:
ejcoumans
2006-12-16 05:51:30 +00:00
parent 39f223fd65
commit df9230327c
141 changed files with 1091 additions and 1042 deletions

View File

@@ -18,7 +18,7 @@ subject to the following restrictions:
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "LinearMath/btTransformUtil.h"
static const btScalar kSign[] = { 1.0f, -1.0f, 1.0f };
static const btScalar kSign[] = { btScalar(1.0), btScalar(-1.0), btScalar(1.0) };
static const int kAxisA[] = { 1, 0, 0 };
static const int kAxisB[] = { 2, 2, 1 };
#define GENERIC_D6_DISABLE_WARMSTARTING 1
@@ -38,9 +38,9 @@ btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody&
//so start all locked
for (int i=0; i<6;++i)
{
m_lowerLimit[i] = 0.0f;
m_upperLimit[i] = 0.0f;
m_accumulatedImpulse[i] = 0.0f;
m_lowerLimit[i] = btScalar(0.0);
m_upperLimit[i] = btScalar(0.0);
m_accumulatedImpulse[i] = btScalar(0.0);
}
}
@@ -83,7 +83,7 @@ void btGeneric6DofConstraint::buildJacobian()
//optionally disable warmstarting
#ifdef GENERIC_D6_DISABLE_WARMSTARTING
m_accumulatedImpulse[i] = 0.f;
m_accumulatedImpulse[i] = btScalar(0.);
#endif //GENERIC_D6_DISABLE_WARMSTARTING
// Apply accumulated impulse
@@ -115,7 +115,7 @@ void btGeneric6DofConstraint::buildJacobian()
m_rbB.getInvInertiaDiagLocal());
#ifdef GENERIC_D6_DISABLE_WARMSTARTING
m_accumulatedImpulse[i + 3] = 0.f;
m_accumulatedImpulse[i + 3] = btScalar(0.);
#endif //GENERIC_D6_DISABLE_WARMSTARTING
// Apply accumulated impulse
@@ -127,7 +127,7 @@ void btGeneric6DofConstraint::buildJacobian()
}
}
float getMatrixElem(const btMatrix3x3& mat,int index)
btScalar getMatrixElem(const btMatrix3x3& mat,int index)
{
int row = index%3;
int col = index / 3;
@@ -143,9 +143,9 @@ bool MatrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
/// 0..8
if (getMatrixElem(mat,2) < 1.0f)
if (getMatrixElem(mat,2) < btScalar(1.0))
{
if (getMatrixElem(mat,2) > -1.0f)
if (getMatrixElem(mat,2) > btScalar(-1.0))
{
xyz[0] = btAtan2(-getMatrixElem(mat,5),getMatrixElem(mat,8));
xyz[1] = btAsin(getMatrixElem(mat,2));
@@ -157,7 +157,7 @@ bool MatrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
// WARNING. Not unique. XA - ZA = -atan2(r10,r11)
xyz[0] = -btAtan2(getMatrixElem(mat,3),getMatrixElem(mat,4));
xyz[1] = -SIMD_HALF_PI;
xyz[2] = 0.0f;
xyz[2] = btScalar(0.0);
return false;
}
}
@@ -175,8 +175,8 @@ bool MatrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
void btGeneric6DofConstraint::solveConstraint(btScalar timeStep)
{
btScalar tau = 0.1f;
btScalar damping = 1.0f;
btScalar tau = btScalar(0.1);
btScalar damping = btScalar(1.0);
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform() * m_frameInA.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform() * m_frameInB.getOrigin();
@@ -199,7 +199,7 @@ void btGeneric6DofConstraint::solveConstraint(btScalar timeStep)
localNormalInA[i] = 1;
btVector3 normalWorld = m_rbA.getCenterOfMassTransform().getBasis() * localNormalInA;
btScalar jacDiagABInv = 1.f / m_jacLinear[i].getDiagonal();
btScalar jacDiagABInv = btScalar(1.) / m_jacLinear[i].getDiagonal();
//velocity error (first order error)
btScalar rel_vel = m_jacLinear[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
@@ -207,8 +207,8 @@ void btGeneric6DofConstraint::solveConstraint(btScalar timeStep)
//positional error (zeroth order error)
btScalar depth = -(pivotAInW - pivotBInW).dot(normalWorld);
btScalar lo = -1e30f;
btScalar hi = 1e30f;
btScalar lo = btScalar(-1e30);
btScalar hi = btScalar(1e30);
//handle the limits
if (m_lowerLimit[i] < m_upperLimit[i])
@@ -217,14 +217,14 @@ void btGeneric6DofConstraint::solveConstraint(btScalar timeStep)
if (depth > m_upperLimit[i])
{
depth -= m_upperLimit[i];
lo = 0.f;
lo = btScalar(0.);
} else
{
if (depth < m_lowerLimit[i])
{
depth -= m_lowerLimit[i];
hi = 0.f;
hi = btScalar(0.);
} else
{
continue;
@@ -234,9 +234,9 @@ void btGeneric6DofConstraint::solveConstraint(btScalar timeStep)
}
btScalar normalImpulse= (tau*depth/timeStep - damping*rel_vel) * jacDiagABInv;
float oldNormalImpulse = m_accumulatedImpulse[i];
float sum = oldNormalImpulse + normalImpulse;
m_accumulatedImpulse[i] = sum > hi ? 0.f : sum < lo ? 0.f : sum;
btScalar oldNormalImpulse = m_accumulatedImpulse[i];
btScalar sum = oldNormalImpulse + normalImpulse;
m_accumulatedImpulse[i] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
normalImpulse = m_accumulatedImpulse[i] - oldNormalImpulse;
btVector3 impulse_vector = normalWorld * normalImpulse;
@@ -267,7 +267,7 @@ void btGeneric6DofConstraint::solveConstraint(btScalar timeStep)
btVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
btVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
btScalar jacDiagABInv = 1.f / m_jacAng[i].getDiagonal();
btScalar jacDiagABInv = btScalar(1.) / m_jacAng[i].getDiagonal();
//velocity error (first order error)
btScalar rel_vel = m_jacAng[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
@@ -279,27 +279,27 @@ void btGeneric6DofConstraint::solveConstraint(btScalar timeStep)
btScalar rel_pos = kSign[i] * axisA.dot(axisB);
btScalar lo = -1e30f;
btScalar hi = 1e30f;
btScalar lo = btScalar(-1e30);
btScalar hi = btScalar(1e30);
//handle the twist limit
if (m_lowerLimit[i+3] < m_upperLimit[i+3])
{
//clamp the values
btScalar loLimit = m_upperLimit[i+3] > -3.1415 ? m_lowerLimit[i+3] : -1e30f;
btScalar hiLimit = m_upperLimit[i+3] < 3.1415 ? m_upperLimit[i+3] : 1e30f;
btScalar loLimit = m_upperLimit[i+3] > -3.1415 ? m_lowerLimit[i+3] : btScalar(-1e30);
btScalar hiLimit = m_upperLimit[i+3] < 3.1415 ? m_upperLimit[i+3] : btScalar(1e30);
float projAngle = -2.f*xyz[i];
btScalar projAngle = btScalar(-2.)*xyz[i];
if (projAngle < loLimit)
{
hi = 0.f;
hi = btScalar(0.);
rel_pos = (loLimit - projAngle);
} else
{
if (projAngle > hiLimit)
{
lo = 0.f;
lo = btScalar(0.);
rel_pos = (hiLimit - projAngle);
} else
{
@@ -311,9 +311,9 @@ void btGeneric6DofConstraint::solveConstraint(btScalar timeStep)
//impulse
btScalar normalImpulse= -(tau*rel_pos/timeStep + damping*rel_vel) * jacDiagABInv;
float oldNormalImpulse = m_accumulatedImpulse[i+3];
float sum = oldNormalImpulse + normalImpulse;
m_accumulatedImpulse[i+3] = sum > hi ? 0.f : sum < lo ? 0.f : sum;
btScalar oldNormalImpulse = m_accumulatedImpulse[i+3];
btScalar sum = oldNormalImpulse + normalImpulse;
m_accumulatedImpulse[i+3] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
normalImpulse = m_accumulatedImpulse[i+3] - oldNormalImpulse;
// Dirk: Not needed - we could actually project onto Jacobian entry here (same as above)