Contribution to add optional double precision floating point support. Define BT_USE_DOUBLE_PRECISION for all involved libraries/apps.
This commit is contained in:
@@ -49,7 +49,7 @@ m_enableAngularMotor(false)
|
||||
|
||||
void btHingeConstraint::buildJacobian()
|
||||
{
|
||||
m_appliedImpulse = 0.f;
|
||||
m_appliedImpulse = btScalar(0.);
|
||||
|
||||
btVector3 normal(0,0,0);
|
||||
|
||||
@@ -115,8 +115,8 @@ void btHingeConstraint::solveConstraint(btScalar timeStep)
|
||||
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_pivotInB;
|
||||
|
||||
btVector3 normal(0,0,0);
|
||||
btScalar tau = 0.3f;
|
||||
btScalar damping = 1.f;
|
||||
btScalar tau = btScalar(0.3);
|
||||
btScalar damping = btScalar(1.);
|
||||
|
||||
//linear part
|
||||
if (!m_angularOnly)
|
||||
@@ -124,7 +124,7 @@ void btHingeConstraint::solveConstraint(btScalar timeStep)
|
||||
for (int i=0;i<3;i++)
|
||||
{
|
||||
normal[i] = 1;
|
||||
btScalar jacDiagABInv = 1.f / m_jac[i].getDiagonal();
|
||||
btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();
|
||||
|
||||
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
|
||||
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
|
||||
@@ -165,27 +165,27 @@ void btHingeConstraint::solveConstraint(btScalar timeStep)
|
||||
btVector3 velrelOrthog = angAorthog-angBorthog;
|
||||
{
|
||||
//solve orthogonal angular velocity correction
|
||||
float relaxation = 1.f;
|
||||
float len = velrelOrthog.length();
|
||||
if (len > 0.00001f)
|
||||
btScalar relaxation = btScalar(1.);
|
||||
btScalar len = velrelOrthog.length();
|
||||
if (len > btScalar(0.00001))
|
||||
{
|
||||
btVector3 normal = velrelOrthog.normalized();
|
||||
float denom = getRigidBodyA().computeAngularImpulseDenominator(normal) +
|
||||
btScalar denom = getRigidBodyA().computeAngularImpulseDenominator(normal) +
|
||||
getRigidBodyB().computeAngularImpulseDenominator(normal);
|
||||
// scale for mass and relaxation
|
||||
//todo: expose this 0.9 factor to developer
|
||||
velrelOrthog *= (1.f/denom) * 0.9f;
|
||||
velrelOrthog *= (btScalar(1.)/denom) * btScalar(0.9);
|
||||
}
|
||||
|
||||
//solve angular positional correction
|
||||
btVector3 angularError = -axisA.cross(axisB) *(1.f/timeStep);
|
||||
float len2 = angularError.length();
|
||||
if (len2>0.00001f)
|
||||
btVector3 angularError = -axisA.cross(axisB) *(btScalar(1.)/timeStep);
|
||||
btScalar len2 = angularError.length();
|
||||
if (len2>btScalar(0.00001))
|
||||
{
|
||||
btVector3 normal2 = angularError.normalized();
|
||||
float denom2 = getRigidBodyA().computeAngularImpulseDenominator(normal2) +
|
||||
btScalar denom2 = getRigidBodyA().computeAngularImpulseDenominator(normal2) +
|
||||
getRigidBodyB().computeAngularImpulseDenominator(normal2);
|
||||
angularError *= (1.f/denom2) * relaxation;
|
||||
angularError *= (btScalar(1.)/denom2) * relaxation;
|
||||
}
|
||||
|
||||
m_rbA.applyTorqueImpulse(-velrelOrthog+angularError);
|
||||
@@ -204,10 +204,10 @@ void btHingeConstraint::solveConstraint(btScalar timeStep)
|
||||
btScalar desiredMotorVel = m_motorTargetVelocity;
|
||||
btScalar motor_relvel = desiredMotorVel - projRelVel;
|
||||
|
||||
float denom3 = getRigidBodyA().computeAngularImpulseDenominator(axisA) +
|
||||
btScalar denom3 = getRigidBodyA().computeAngularImpulseDenominator(axisA) +
|
||||
getRigidBodyB().computeAngularImpulseDenominator(axisA);
|
||||
|
||||
btScalar unclippedMotorImpulse = (1.f/denom3) * motor_relvel;;
|
||||
btScalar unclippedMotorImpulse = (btScalar(1.)/denom3) * motor_relvel;;
|
||||
//todo: should clip against accumulated impulse
|
||||
btScalar clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse;
|
||||
clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse;
|
||||
|
||||
Reference in New Issue
Block a user