1)Added SCE Physics Effects boxBoxDistance

BulletMultiThreaded/NarrowPhaseCollision makes use of this boxBoxDistance.
Cache some values in src/BulletMultiThreaded/SpuContactManifoldCollisionAlgorithm.cpp, to avoid DMA transfers

2) Added btConvexSeparatingDistanceUtil: this allows caching of separating distance/vector as early-out to avoid convex-convex collision detection.
btConvexSeparatingDistanceUtil is used in src/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp and can be controlled by btDispatcherInfo.m_useConvexConservativeDistanceUtil/m_convexConservativeDistanceThreshold

3) Use BulletMultiThreaded/vectormath/scalar/cpp/vectormath/scalar/cpp/vectormath_aos.h as fallback for non-PlayStation 3 Cell SPU/PPU platforms (used by boxBoxDistance).
Note there are other implementations in Extras/vectormath folder, that are potentially faster for IBM Cell SDK 3.0 SPU (libspe2)
This commit is contained in:
erwin.coumans
2008-10-20 20:12:39 +00:00
parent b95810245f
commit e6202f58ad
22 changed files with 6716 additions and 49 deletions

View File

@@ -0,0 +1,158 @@
/*
Copyright (C) 2006, 2008 Sony Computer Entertainment Inc.
All rights reserved.
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __BOX_H__
#define __BOX_H__
#include <math.h>
#include <vectormath_aos.h>
using namespace Vectormath::Aos;
enum FeatureType { F, E, V };
//----------------------------------------------------------------------------
// Box
//----------------------------------------------------------------------------
class Box
{
public:
Vector3 half;
inline Box()
{}
inline Box(Vector3 half_);
inline Box(float hx, float hy, float hz);
inline void Set(Vector3 half_);
inline void Set(float hx, float hy, float hz);
inline Vector3 GetAABB(const Matrix3& rotation) const;
};
inline
Box::Box(Vector3 half_)
{
Set(half_);
}
inline
Box::Box(float hx, float hy, float hz)
{
Set(hx, hy, hz);
}
inline
void
Box::Set(Vector3 half_)
{
half = half_;
}
inline
void
Box::Set(float hx, float hy, float hz)
{
half = Vector3(hx, hy, hz);
}
inline
Vector3
Box::GetAABB(const Matrix3& rotation) const
{
return absPerElem(rotation) * half;
}
//-------------------------------------------------------------------------------------------------
// BoxPoint
//-------------------------------------------------------------------------------------------------
class BoxPoint
{
public:
BoxPoint() : localPoint(0.0f) {}
Point3 localPoint;
FeatureType featureType;
int featureIdx;
inline void setVertexFeature(int plusX, int plusY, int plusZ);
inline void setEdgeFeature(int dim0, int plus0, int dim1, int plus1);
inline void setFaceFeature(int dim, int plus);
inline void getVertexFeature(int & plusX, int & plusY, int & plusZ) const;
inline void getEdgeFeature(int & dim0, int & plus0, int & dim1, int & plus1) const;
inline void getFaceFeature(int & dim, int & plus) const;
};
inline
void
BoxPoint::setVertexFeature(int plusX, int plusY, int plusZ)
{
featureType = V;
featureIdx = plusX << 2 | plusY << 1 | plusZ;
}
inline
void
BoxPoint::setEdgeFeature(int dim0, int plus0, int dim1, int plus1)
{
featureType = E;
if (dim0 > dim1) {
featureIdx = plus1 << 5 | dim1 << 3 | plus0 << 2 | dim0;
} else {
featureIdx = plus0 << 5 | dim0 << 3 | plus1 << 2 | dim1;
}
}
inline
void
BoxPoint::setFaceFeature(int dim, int plus)
{
featureType = F;
featureIdx = plus << 2 | dim;
}
inline
void
BoxPoint::getVertexFeature(int & plusX, int & plusY, int & plusZ) const
{
plusX = featureIdx >> 2;
plusY = featureIdx >> 1 & 1;
plusZ = featureIdx & 1;
}
inline
void
BoxPoint::getEdgeFeature(int & dim0, int & plus0, int & dim1, int & plus1) const
{
plus0 = featureIdx >> 5;
dim0 = featureIdx >> 3 & 3;
plus1 = featureIdx >> 2 & 1;
dim1 = featureIdx & 3;
}
inline
void
BoxPoint::getFaceFeature(int & dim, int & plus) const
{
plus = featureIdx >> 2;
dim = featureIdx & 3;
}
#endif /* __BOX_H__ */

View File

@@ -26,7 +26,8 @@
#include "SpuEpaPenetrationDepthSolver.h"
#include "SpuGjkPairDetector.h"
#include "SpuVoronoiSimplexSolver.h"
#include "boxBoxDistance.h"
#include "Util/Vectormath2Bullet.h"
#include "SpuCollisionShapes.h" //definition of SpuConvexPolyhedronVertexData
#ifdef __SPU__
@@ -89,11 +90,14 @@ bool gUseEpa = false;
#include <LibSN_SPU.h>
#endif //USE_SN_TUNER
#if defined (__CELLOS_LV2__) || defined (USE_LIBSPE2)
#if defined (__SPU__) || defined (USE_LIBSPE2)
#include <spu_printf.h>
#else
#define IGNORE_ALIGNMENT 1
#define spu_printf printf
#include <stdio.h>
#include <stdlib.h>
#define spu_printf printf
#endif
//int gNumConvexPoints0=0;
@@ -101,14 +105,7 @@ bool gUseEpa = false;
///Make sure no destructors are called on this memory
struct CollisionTask_LocalStoreMemory
{
ATTRIBUTE_ALIGNED16(char bufferProxy0[sizeof(btBroadphaseProxy)+16]);
ATTRIBUTE_ALIGNED16(char bufferProxy1[sizeof(btBroadphaseProxy)+16]);
ATTRIBUTE_ALIGNED16(btBroadphaseProxy* gProxyPtr0);
ATTRIBUTE_ALIGNED16(btBroadphaseProxy* gProxyPtr1);
//ATTRIBUTE_ALIGNED16(btCollisionObject gColObj0);
//ATTRIBUTE_ALIGNED16(btCollisionObject gColObj1);
ATTRIBUTE_ALIGNED16(char gColObj0 [sizeof(btCollisionObject)+16]);
ATTRIBUTE_ALIGNED16(char gColObj1 [sizeof(btCollisionObject)+16]);
@@ -472,18 +469,19 @@ void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTa
//try generic GJK
SpuVoronoiSimplexSolver vsSolver;
SpuEpaPenetrationDepthSolver epaPenetrationSolver;
SpuMinkowskiPenetrationDepthSolver minkowskiPenetrationSolver;
SpuConvexPenetrationDepthSolver* penetrationSolver;
#ifdef ENABLE_EPA
SpuEpaPenetrationDepthSolver epaPenetrationSolver;
if (gUseEpa)
{
penetrationSolver = &epaPenetrationSolver;
} else {
} else
#endif
{
penetrationSolver = &minkowskiPenetrationSolver;
}
///DMA in the vertices for convex shapes
ATTRIBUTE_ALIGNED16(char convexHullShape0[sizeof(btConvexHullShape)]);
ATTRIBUTE_ALIGNED16(char convexHullShape1[sizeof(btConvexHullShape)]);
@@ -582,12 +580,12 @@ SIMD_FORCE_INLINE void dmaAndSetupCollisionObjects(SpuCollisionPairInput& collis
register int dmaSize;
register ppu_address_t dmaPpuAddress2;
dmaSize = sizeof(btCollisionObject);
dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr1->m_clientObject :*/ (ppu_address_t)lsMem.gProxyPtr0->m_clientObject;
dmaSize = sizeof(btCollisionObject);//btTransform);
dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr1->m_clientObject :*/ (ppu_address_t)lsMem.gSpuContactManifoldAlgo.getCollisionObject0();
cellDmaGet(&lsMem.gColObj0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
dmaSize = sizeof(btCollisionObject);
dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr0->m_clientObject :*/ (ppu_address_t)lsMem.gProxyPtr1->m_clientObject;
dmaSize = sizeof(btCollisionObject);//btTransform);
dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr0->m_clientObject :*/ (ppu_address_t)lsMem.gSpuContactManifoldAlgo.getCollisionObject1();
cellDmaGet(&lsMem.gColObj1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
@@ -796,8 +794,9 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
}
}
spuContacts.flush();
}
@@ -912,6 +911,7 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
#endif //DEBUG_SPU_COLLISION_DETECTION
/*
dmaSize = sizeof(btBroadphaseProxy);
dmaPpuAddress2 = (ppu_address_t)pair.m_pProxy0;
//stallingUnalignedDmaSmallGet(lsMem.gProxyPtr0, dmaPpuAddress2 , dmaSize);
@@ -923,6 +923,8 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
tmpPtr = cellDmaSmallGetReadOnly(&lsMem.bufferProxy1, dmaPpuAddress2 , dmaSize,DMA_TAG(1), 0, 0);
lsMem.gProxyPtr1 = (btBroadphaseProxy*)tmpPtr;
*/
cellDmaWaitTagStatusAll(DMA_MASK(1));
@@ -963,11 +965,80 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
// Get the collision objects
dmaAndSetupCollisionObjects(collisionPairInput, lsMem);
if (lsMem.getColObj0()->isActive() || lsMem.getColObj1()->isActive())
//if (lsMem.getColObj0()->isActive() || lsMem.getColObj1()->isActive())
{
handleCollisionPair(collisionPairInput, lsMem, spuContacts,
(ppu_address_t)lsMem.getColObj0()->getCollisionShape(), &lsMem.gCollisionShapes[0].collisionShape,
(ppu_address_t)lsMem.getColObj1()->getCollisionShape(), &lsMem.gCollisionShapes[1].collisionShape);
bool boxbox = ((lsMem.gSpuContactManifoldAlgo.getShapeType0()==BOX_SHAPE_PROXYTYPE)&&
(lsMem.gSpuContactManifoldAlgo.getShapeType1()==BOX_SHAPE_PROXYTYPE));
if (boxbox && !gUseEpa)//for now use gUseEpa for this toggle
{
//getVmVector3
//getBtVector3
//getVmQuat
//getBtQuat
//getVmMatrix3
//getCollisionMargin0
btScalar margin0 = lsMem.gSpuContactManifoldAlgo.getCollisionMargin0();
btScalar margin1 = lsMem.gSpuContactManifoldAlgo.getCollisionMargin1();
btVector3 shapeDim0 = lsMem.gSpuContactManifoldAlgo.getShapeDimensions0()+btVector3(margin0,margin0,margin0);
btVector3 shapeDim1 = lsMem.gSpuContactManifoldAlgo.getShapeDimensions1()+btVector3(margin1,margin1,margin1);
Box boxA(shapeDim0.getX(),shapeDim0.getY(),shapeDim0.getZ());
Vector3 vmPos0 = getVmVector3(collisionPairInput.m_worldTransform0.getOrigin());
Vector3 vmPos1 = getVmVector3(collisionPairInput.m_worldTransform1.getOrigin());
Matrix3 vmMatrix0 = getVmMatrix3(collisionPairInput.m_worldTransform0.getBasis());
Matrix3 vmMatrix1 = getVmMatrix3(collisionPairInput.m_worldTransform1.getBasis());
Transform3 transformA(vmMatrix0,vmPos0);
Box boxB(shapeDim1.getX(),shapeDim1.getY(),shapeDim1.getZ());
Transform3 transformB(vmMatrix1,vmPos1);
BoxPoint resultClosestBoxPointA;
BoxPoint resultClosestBoxPointB;
Vector3 resultNormal;
float distanceThreshold = gContactBreakingThreshold;//0.0f;//FLT_MAX;//use epsilon?
float distance = boxBoxDistance(resultNormal,resultClosestBoxPointA,resultClosestBoxPointB,
boxA, transformA, boxB,transformB,distanceThreshold);
if(distance < distanceThreshold)
{
//spu_printf("boxbox dist = %f\n",distance);
btPersistentManifold* spuManifold=&lsMem.gPersistentManifold;
btPersistentManifold* manifold = (btPersistentManifold*)collisionPairInput.m_persistentManifoldPtr;
ppu_address_t manifoldAddress = (ppu_address_t)manifold;
//spuContacts.setContactInfo(spuManifold,manifoldAddress,wuInput->m_worldTransform0,wuInput->m_worldTransform1,wuInput->m_isSwapped);
spuContacts.setContactInfo(spuManifold,manifoldAddress,lsMem.getColObj0()->getWorldTransform(),
lsMem.getColObj1()->getWorldTransform(),
lsMem.getColObj0()->getRestitution(),lsMem.getColObj1()->getRestitution(),
lsMem.getColObj0()->getFriction(),lsMem.getColObj1()->getFriction(),
collisionPairInput.m_isSwapped);
btVector3 normalInB = -getBtVector3(resultNormal);
btVector3 pointOnB = collisionPairInput.m_worldTransform1(getBtVector3(resultClosestBoxPointB.localPoint));
//transform pointOnB to worldspace?
spuContacts.addContactPoint(
normalInB,
pointOnB,
distance);
//normalInB,
//pointOnB+positionOffset,
//distance);
//SET_CONTACT_POINT(cp[0],distance,-testNormal,
// boxPointA,relTransformA,primIndexA,
// boxPointB,relTransformB,primIndexB);
spuContacts.flush();
}
} else
{
handleCollisionPair(collisionPairInput, lsMem, spuContacts,
(ppu_address_t)lsMem.getColObj0()->getCollisionShape(), &lsMem.gCollisionShapes[0].collisionShape,
(ppu_address_t)lsMem.getColObj1()->getCollisionShape(), &lsMem.gCollisionShapes[1].collisionShape);
}
}
}
@@ -981,5 +1052,6 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
}// for
return;
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,66 @@
/*
Copyright (C) 2006, 2008 Sony Computer Entertainment Inc.
All rights reserved.
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __BOXBOXDISTANCE_H__
#define __BOXBOXDISTANCE_H__
#include "Box.h"
using namespace Vectormath::Aos;
//---------------------------------------------------------------------------
// boxBoxDistance:
//
// description:
// this computes info that can be used for the collision response of two boxes. when the boxes
// do not overlap, the points are set to the closest points of the boxes, and a positive
// distance between them is returned. if the boxes do overlap, a negative distance is returned
// and the points are set to two points that would touch after the boxes are translated apart.
// the contact normal gives the direction to repel or separate the boxes when they touch or
// overlap (it's being approximated here as one of the 15 "separating axis" directions).
//
// returns:
// positive or negative distance between two boxes.
//
// args:
// Vector3& normal: set to a unit contact normal pointing from box A to box B.
//
// BoxPoint& boxPointA, BoxPoint& boxPointB:
// set to a closest point or point of penetration on each box.
//
// Box boxA, Box boxB:
// boxes, represented as 3 half-widths
//
// const Transform3& transformA, const Transform3& transformB:
// box transformations, in world coordinates
//
// float distanceThreshold:
// the algorithm will exit early if it finds that the boxes are more distant than this
// threshold, and not compute a contact normal or points. if this distance returned
// exceeds the threshold, all the other output data may not have been computed. by
// default, this is set to MAX_FLOAT so it will have no effect.
//
//---------------------------------------------------------------------------
float
boxBoxDistance(Vector3& normal, BoxPoint& boxPointA, BoxPoint& boxPointB,
Box boxA, const Transform3 & transformA, Box boxB,
const Transform3 & transformB,
float distanceThreshold = FLT_MAX );
#endif /* __BOXBOXDISTANCE_H__ */