Big work-in-progress refactoring of the constraint solver:

1) Add fast branchless SIMD support for constraint solver (Windows only until we get other contributions).
See resolveSingleConstraintRowGenericSIMD in Bullet/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
resolveSingleConstraintRowGenericSIMD can be used for all constraints, including contact, point 2 point, hinge, generic etc.

2) During this refactoring, all constraints support the obsolete 'solveConstraintObsolete' while we add 'getInfo1' and 'getInfo2' support.
This interface is almost identical interface to Open Dynamics Engine, to make it easier to port Dantzig LCP solver.

3) Some minor refactoring to reduce huge constructor overhead in math classes.
This commit is contained in:
erwin.coumans
2008-12-01 06:41:25 +00:00
parent 7e93be739b
commit e80feca36b
25 changed files with 2099 additions and 1315 deletions

View File

@@ -23,7 +23,8 @@ Written by: Marcus Hennix
#include <new>
btConeTwistConstraint::btConeTwistConstraint()
:btTypedConstraint(CONETWIST_CONSTRAINT_TYPE)
:btTypedConstraint(CONETWIST_CONSTRAINT_TYPE),
m_useSolveConstraintObsolete(true)
{
}
@@ -31,7 +32,8 @@ btConeTwistConstraint::btConeTwistConstraint()
btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,btRigidBody& rbB,
const btTransform& rbAFrame,const btTransform& rbBFrame)
:btTypedConstraint(CONETWIST_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame),
m_angularOnly(false)
m_angularOnly(false),
m_useSolveConstraintObsolete(true)
{
m_swingSpan1 = btScalar(1e30);
m_swingSpan2 = btScalar(1e30);
@@ -46,7 +48,8 @@ btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,btRigidBody& rbB,
btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,const btTransform& rbAFrame)
:btTypedConstraint(CONETWIST_CONSTRAINT_TYPE,rbA),m_rbAFrame(rbAFrame),
m_angularOnly(false)
m_angularOnly(false),
m_useSolveConstraintObsolete(true)
{
m_rbBFrame = m_rbAFrame;
@@ -61,221 +64,251 @@ btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,const btTransform&
}
void btConeTwistConstraint::getInfo1 (btConstraintInfo1* info)
{
if (m_useSolveConstraintObsolete)
{
info->m_numConstraintRows = 0;
info->nub = 0;
} else
{
btAssert(0);
}
}
void btConeTwistConstraint::getInfo2 (btConstraintInfo2* info)
{
btAssert(0);
}
void btConeTwistConstraint::buildJacobian()
{
m_appliedImpulse = btScalar(0.);
//set bias, sign, clear accumulator
m_swingCorrection = btScalar(0.);
m_twistLimitSign = btScalar(0.);
m_solveTwistLimit = false;
m_solveSwingLimit = false;
m_accTwistLimitImpulse = btScalar(0.);
m_accSwingLimitImpulse = btScalar(0.);
if (!m_angularOnly)
if (m_useSolveConstraintObsolete)
{
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
btVector3 relPos = pivotBInW - pivotAInW;
m_appliedImpulse = btScalar(0.);
btVector3 normal[3];
if (relPos.length2() > SIMD_EPSILON)
//set bias, sign, clear accumulator
m_swingCorrection = btScalar(0.);
m_twistLimitSign = btScalar(0.);
m_solveTwistLimit = false;
m_solveSwingLimit = false;
m_accTwistLimitImpulse = btScalar(0.);
m_accSwingLimitImpulse = btScalar(0.);
if (!m_angularOnly)
{
normal[0] = relPos.normalized();
}
else
{
normal[0].setValue(btScalar(1.0),0,0);
}
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
btVector3 relPos = pivotBInW - pivotAInW;
btPlaneSpace1(normal[0], normal[1], normal[2]);
for (int i=0;i<3;i++)
{
new (&m_jac[i]) btJacobianEntry(
pivotAInW - m_rbA.getCenterOfMassPosition(),
pivotBInW - m_rbB.getCenterOfMassPosition(),
normal[i],
m_rbA.getInvInertiaDiagLocal(),
m_rbA.getInvMass(),
m_rbB.getInvInertiaDiagLocal(),
m_rbB.getInvMass());
}
}
btVector3 b1Axis1,b1Axis2,b1Axis3;
btVector3 b2Axis1,b2Axis2;
b1Axis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(0);
b2Axis1 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(0);
btScalar swing1=btScalar(0.),swing2 = btScalar(0.);
btScalar swx=btScalar(0.),swy = btScalar(0.);
btScalar thresh = btScalar(10.);
btScalar fact;
// Get Frame into world space
if (m_swingSpan1 >= btScalar(0.05f))
{
b1Axis2 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(1);
// swing1 = btAtan2Fast( b2Axis1.dot(b1Axis2),b2Axis1.dot(b1Axis1) );
swx = b2Axis1.dot(b1Axis1);
swy = b2Axis1.dot(b1Axis2);
swing1 = btAtan2Fast(swy, swx);
fact = (swy*swy + swx*swx) * thresh * thresh;
fact = fact / (fact + btScalar(1.0));
swing1 *= fact;
}
if (m_swingSpan2 >= btScalar(0.05f))
{
b1Axis3 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(2);
// swing2 = btAtan2Fast( b2Axis1.dot(b1Axis3),b2Axis1.dot(b1Axis1) );
swx = b2Axis1.dot(b1Axis1);
swy = b2Axis1.dot(b1Axis3);
swing2 = btAtan2Fast(swy, swx);
fact = (swy*swy + swx*swx) * thresh * thresh;
fact = fact / (fact + btScalar(1.0));
swing2 *= fact;
}
btScalar RMaxAngle1Sq = 1.0f / (m_swingSpan1*m_swingSpan1);
btScalar RMaxAngle2Sq = 1.0f / (m_swingSpan2*m_swingSpan2);
btScalar EllipseAngle = btFabs(swing1*swing1)* RMaxAngle1Sq + btFabs(swing2*swing2) * RMaxAngle2Sq;
if (EllipseAngle > 1.0f)
{
m_swingCorrection = EllipseAngle-1.0f;
m_solveSwingLimit = true;
// Calculate necessary axis & factors
m_swingAxis = b2Axis1.cross(b1Axis2* b2Axis1.dot(b1Axis2) + b1Axis3* b2Axis1.dot(b1Axis3));
m_swingAxis.normalize();
btScalar swingAxisSign = (b2Axis1.dot(b1Axis1) >= 0.0f) ? 1.0f : -1.0f;
m_swingAxis *= swingAxisSign;
m_kSwing = btScalar(1.) / (getRigidBodyA().computeAngularImpulseDenominator(m_swingAxis) +
getRigidBodyB().computeAngularImpulseDenominator(m_swingAxis));
}
// Twist limits
if (m_twistSpan >= btScalar(0.))
{
btVector3 b2Axis2 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(1);
btQuaternion rotationArc = shortestArcQuat(b2Axis1,b1Axis1);
btVector3 TwistRef = quatRotate(rotationArc,b2Axis2);
btScalar twist = btAtan2Fast( TwistRef.dot(b1Axis3), TwistRef.dot(b1Axis2) );
btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? m_limitSoftness : btScalar(0.);
if (twist <= -m_twistSpan*lockedFreeFactor)
{
m_twistCorrection = -(twist + m_twistSpan);
m_solveTwistLimit = true;
m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f;
m_twistAxis.normalize();
m_twistAxis *= -1.0f;
m_kTwist = btScalar(1.) / (getRigidBodyA().computeAngularImpulseDenominator(m_twistAxis) +
getRigidBodyB().computeAngularImpulseDenominator(m_twistAxis));
} else
if (twist > m_twistSpan*lockedFreeFactor)
btVector3 normal[3];
if (relPos.length2() > SIMD_EPSILON)
{
m_twistCorrection = (twist - m_twistSpan);
normal[0] = relPos.normalized();
}
else
{
normal[0].setValue(btScalar(1.0),0,0);
}
btPlaneSpace1(normal[0], normal[1], normal[2]);
for (int i=0;i<3;i++)
{
new (&m_jac[i]) btJacobianEntry(
pivotAInW - m_rbA.getCenterOfMassPosition(),
pivotBInW - m_rbB.getCenterOfMassPosition(),
normal[i],
m_rbA.getInvInertiaDiagLocal(),
m_rbA.getInvMass(),
m_rbB.getInvInertiaDiagLocal(),
m_rbB.getInvMass());
}
}
btVector3 b1Axis1,b1Axis2,b1Axis3;
btVector3 b2Axis1,b2Axis2;
b1Axis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(0);
b2Axis1 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(0);
btScalar swing1=btScalar(0.),swing2 = btScalar(0.);
btScalar swx=btScalar(0.),swy = btScalar(0.);
btScalar thresh = btScalar(10.);
btScalar fact;
// Get Frame into world space
if (m_swingSpan1 >= btScalar(0.05f))
{
b1Axis2 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(1);
// swing1 = btAtan2Fast( b2Axis1.dot(b1Axis2),b2Axis1.dot(b1Axis1) );
swx = b2Axis1.dot(b1Axis1);
swy = b2Axis1.dot(b1Axis2);
swing1 = btAtan2Fast(swy, swx);
fact = (swy*swy + swx*swx) * thresh * thresh;
fact = fact / (fact + btScalar(1.0));
swing1 *= fact;
}
if (m_swingSpan2 >= btScalar(0.05f))
{
b1Axis3 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(2);
// swing2 = btAtan2Fast( b2Axis1.dot(b1Axis3),b2Axis1.dot(b1Axis1) );
swx = b2Axis1.dot(b1Axis1);
swy = b2Axis1.dot(b1Axis3);
swing2 = btAtan2Fast(swy, swx);
fact = (swy*swy + swx*swx) * thresh * thresh;
fact = fact / (fact + btScalar(1.0));
swing2 *= fact;
}
btScalar RMaxAngle1Sq = 1.0f / (m_swingSpan1*m_swingSpan1);
btScalar RMaxAngle2Sq = 1.0f / (m_swingSpan2*m_swingSpan2);
btScalar EllipseAngle = btFabs(swing1*swing1)* RMaxAngle1Sq + btFabs(swing2*swing2) * RMaxAngle2Sq;
if (EllipseAngle > 1.0f)
{
m_swingCorrection = EllipseAngle-1.0f;
m_solveSwingLimit = true;
// Calculate necessary axis & factors
m_swingAxis = b2Axis1.cross(b1Axis2* b2Axis1.dot(b1Axis2) + b1Axis3* b2Axis1.dot(b1Axis3));
m_swingAxis.normalize();
btScalar swingAxisSign = (b2Axis1.dot(b1Axis1) >= 0.0f) ? 1.0f : -1.0f;
m_swingAxis *= swingAxisSign;
m_kSwing = btScalar(1.) / (getRigidBodyA().computeAngularImpulseDenominator(m_swingAxis) +
getRigidBodyB().computeAngularImpulseDenominator(m_swingAxis));
}
// Twist limits
if (m_twistSpan >= btScalar(0.))
{
btVector3 b2Axis2 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(1);
btQuaternion rotationArc = shortestArcQuat(b2Axis1,b1Axis1);
btVector3 TwistRef = quatRotate(rotationArc,b2Axis2);
btScalar twist = btAtan2Fast( TwistRef.dot(b1Axis3), TwistRef.dot(b1Axis2) );
btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? m_limitSoftness : btScalar(0.);
if (twist <= -m_twistSpan*lockedFreeFactor)
{
m_twistCorrection = -(twist + m_twistSpan);
m_solveTwistLimit = true;
m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f;
m_twistAxis.normalize();
m_twistAxis *= -1.0f;
m_kTwist = btScalar(1.) / (getRigidBodyA().computeAngularImpulseDenominator(m_twistAxis) +
getRigidBodyB().computeAngularImpulseDenominator(m_twistAxis));
}
} else
if (twist > m_twistSpan*lockedFreeFactor)
{
m_twistCorrection = (twist - m_twistSpan);
m_solveTwistLimit = true;
m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f;
m_twistAxis.normalize();
m_kTwist = btScalar(1.) / (getRigidBodyA().computeAngularImpulseDenominator(m_twistAxis) +
getRigidBodyB().computeAngularImpulseDenominator(m_twistAxis));
}
}
}
}
void btConeTwistConstraint::solveConstraint(btScalar timeStep)
void btConeTwistConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep)
{
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
btScalar tau = btScalar(0.3);
//linear part
if (!m_angularOnly)
if (m_useSolveConstraintObsolete)
{
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
btVector3 vel1 = m_rbA.getVelocityInLocalPoint(rel_pos1);
btVector3 vel2 = m_rbB.getVelocityInLocalPoint(rel_pos2);
btVector3 vel = vel1 - vel2;
btScalar tau = btScalar(0.3);
for (int i=0;i<3;i++)
{
const btVector3& normal = m_jac[i].m_linearJointAxis;
btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();
btScalar rel_vel;
rel_vel = normal.dot(vel);
//positional error (zeroth order error)
btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv;
m_appliedImpulse += impulse;
btVector3 impulse_vector = normal * impulse;
m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition());
m_rbB.applyImpulse(-impulse_vector, pivotBInW - m_rbB.getCenterOfMassPosition());
}
}
{
///solve angular part
const btVector3& angVelA = getRigidBodyA().getAngularVelocity();
const btVector3& angVelB = getRigidBodyB().getAngularVelocity();
// solve swing limit
if (m_solveSwingLimit)
//linear part
if (!m_angularOnly)
{
btScalar amplitude = ((angVelB - angVelA).dot( m_swingAxis )*m_relaxationFactor*m_relaxationFactor + m_swingCorrection*(btScalar(1.)/timeStep)*m_biasFactor);
btScalar impulseMag = amplitude * m_kSwing;
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
// Clamp the accumulated impulse
btScalar temp = m_accSwingLimitImpulse;
m_accSwingLimitImpulse = btMax(m_accSwingLimitImpulse + impulseMag, btScalar(0.0) );
impulseMag = m_accSwingLimitImpulse - temp;
btVector3 vel1;
bodyA.getVelocityInLocalPointObsolete(rel_pos1,vel1);
btVector3 vel2;
bodyB.getVelocityInLocalPointObsolete(rel_pos2,vel2);
btVector3 vel = vel1 - vel2;
btVector3 impulse = m_swingAxis * impulseMag;
m_rbA.applyTorqueImpulse(impulse);
m_rbB.applyTorqueImpulse(-impulse);
for (int i=0;i<3;i++)
{
const btVector3& normal = m_jac[i].m_linearJointAxis;
btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();
btScalar rel_vel;
rel_vel = normal.dot(vel);
//positional error (zeroth order error)
btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv;
m_appliedImpulse += impulse;
btVector3 ftorqueAxis1 = rel_pos1.cross(normal);
btVector3 ftorqueAxis2 = rel_pos2.cross(normal);
bodyA.applyImpulse(normal*m_rbA.getInvMass(), m_rbA.getInvInertiaTensorWorld()*ftorqueAxis1,impulse);
bodyB.applyImpulse(normal*m_rbB.getInvMass(), m_rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-impulse);
}
}
// solve twist limit
if (m_solveTwistLimit)
{
btScalar amplitude = ((angVelB - angVelA).dot( m_twistAxis )*m_relaxationFactor*m_relaxationFactor + m_twistCorrection*(btScalar(1.)/timeStep)*m_biasFactor );
btScalar impulseMag = amplitude * m_kTwist;
///solve angular part
btVector3 angVelA;
bodyA.getAngularVelocity(angVelA);
btVector3 angVelB;
bodyB.getAngularVelocity(angVelB);
// Clamp the accumulated impulse
btScalar temp = m_accTwistLimitImpulse;
m_accTwistLimitImpulse = btMax(m_accTwistLimitImpulse + impulseMag, btScalar(0.0) );
impulseMag = m_accTwistLimitImpulse - temp;
// solve swing limit
if (m_solveSwingLimit)
{
btScalar amplitude = ((angVelB - angVelA).dot( m_swingAxis )*m_relaxationFactor*m_relaxationFactor + m_swingCorrection*(btScalar(1.)/timeStep)*m_biasFactor);
btScalar impulseMag = amplitude * m_kSwing;
btVector3 impulse = m_twistAxis * impulseMag;
// Clamp the accumulated impulse
btScalar temp = m_accSwingLimitImpulse;
m_accSwingLimitImpulse = btMax(m_accSwingLimitImpulse + impulseMag, btScalar(0.0) );
impulseMag = m_accSwingLimitImpulse - temp;
m_rbA.applyTorqueImpulse(impulse);
m_rbB.applyTorqueImpulse(-impulse);
btVector3 impulse = m_swingAxis * impulseMag;
bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*m_swingAxis,impulseMag);
bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*m_swingAxis,-impulseMag);
}
// solve twist limit
if (m_solveTwistLimit)
{
btScalar amplitude = ((angVelB - angVelA).dot( m_twistAxis )*m_relaxationFactor*m_relaxationFactor + m_twistCorrection*(btScalar(1.)/timeStep)*m_biasFactor );
btScalar impulseMag = amplitude * m_kTwist;
// Clamp the accumulated impulse
btScalar temp = m_accTwistLimitImpulse;
m_accTwistLimitImpulse = btMax(m_accTwistLimitImpulse + impulseMag, btScalar(0.0) );
impulseMag = m_accTwistLimitImpulse - temp;
btVector3 impulse = m_twistAxis * impulseMag;
bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*m_twistAxis,impulseMag);
bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*m_twistAxis,-impulseMag);
}
}
}
}