Big work-in-progress refactoring of the constraint solver:

1) Add fast branchless SIMD support for constraint solver (Windows only until we get other contributions).
See resolveSingleConstraintRowGenericSIMD in Bullet/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
resolveSingleConstraintRowGenericSIMD can be used for all constraints, including contact, point 2 point, hinge, generic etc.

2) During this refactoring, all constraints support the obsolete 'solveConstraintObsolete' while we add 'getInfo1' and 'getInfo2' support.
This interface is almost identical interface to Open Dynamics Engine, to make it easier to port Dantzig LCP solver.

3) Some minor refactoring to reduce huge constructor overhead in math classes.
This commit is contained in:
erwin.coumans
2008-12-01 06:41:25 +00:00
parent 7e93be739b
commit e80feca36b
25 changed files with 2099 additions and 1315 deletions

View File

@@ -19,11 +19,14 @@ subject to the following restrictions:
#include "LinearMath/btTransformUtil.h"
#include "LinearMath/btMinMax.h"
#include <new>
#include "btSolverBody.h"
btHingeConstraint::btHingeConstraint()
: btTypedConstraint (HINGE_CONSTRAINT_TYPE),
m_enableAngularMotor(false)
m_enableAngularMotor(false),
m_useSolveConstraintObsolete(true)
{
}
@@ -31,7 +34,8 @@ btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const bt
btVector3& axisInA,btVector3& axisInB)
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),
m_angularOnly(false),
m_enableAngularMotor(false)
m_enableAngularMotor(false),
m_useSolveConstraintObsolete(true)
{
m_rbAFrame.getOrigin() = pivotInA;
@@ -77,7 +81,7 @@ btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const bt
btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA)
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false)
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false), m_useSolveConstraintObsolete(true)
{
// since no frame is given, assume this to be zero angle and just pick rb transform axis
@@ -115,7 +119,8 @@ btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB,
const btTransform& rbAFrame, const btTransform& rbBFrame)
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame),
m_angularOnly(false),
m_enableAngularMotor(false)
m_enableAngularMotor(false),
m_useSolveConstraintObsolete(true)
{
// flip axis
m_rbBFrame.getBasis()[0][2] *= btScalar(-1.);
@@ -136,7 +141,8 @@ m_enableAngularMotor(false)
btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame)
:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame),
m_angularOnly(false),
m_enableAngularMotor(false)
m_enableAngularMotor(false),
m_useSolveConstraintObsolete(true)
{
///not providing rigidbody B means implicitly using worldspace for body B
@@ -158,226 +164,270 @@ m_enableAngularMotor(false)
void btHingeConstraint::buildJacobian()
{
m_appliedImpulse = btScalar(0.);
if (!m_angularOnly)
if (m_useSolveConstraintObsolete)
{
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
btVector3 relPos = pivotBInW - pivotAInW;
m_appliedImpulse = btScalar(0.);
btVector3 normal[3];
if (relPos.length2() > SIMD_EPSILON)
if (!m_angularOnly)
{
normal[0] = relPos.normalized();
}
else
{
normal[0].setValue(btScalar(1.0),0,0);
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
btVector3 relPos = pivotBInW - pivotAInW;
btVector3 normal[3];
if (relPos.length2() > SIMD_EPSILON)
{
normal[0] = relPos.normalized();
}
else
{
normal[0].setValue(btScalar(1.0),0,0);
}
btPlaneSpace1(normal[0], normal[1], normal[2]);
for (int i=0;i<3;i++)
{
new (&m_jac[i]) btJacobianEntry(
pivotAInW - m_rbA.getCenterOfMassPosition(),
pivotBInW - m_rbB.getCenterOfMassPosition(),
normal[i],
m_rbA.getInvInertiaDiagLocal(),
m_rbA.getInvMass(),
m_rbB.getInvInertiaDiagLocal(),
m_rbB.getInvMass());
}
}
btPlaneSpace1(normal[0], normal[1], normal[2]);
//calculate two perpendicular jointAxis, orthogonal to hingeAxis
//these two jointAxis require equal angular velocities for both bodies
for (int i=0;i<3;i++)
{
new (&m_jac[i]) btJacobianEntry(
pivotAInW - m_rbA.getCenterOfMassPosition(),
pivotBInW - m_rbB.getCenterOfMassPosition(),
normal[i],
m_rbA.getInvInertiaDiagLocal(),
m_rbA.getInvMass(),
m_rbB.getInvInertiaDiagLocal(),
m_rbB.getInvMass());
}
}
//calculate two perpendicular jointAxis, orthogonal to hingeAxis
//these two jointAxis require equal angular velocities for both bodies
//this is unused for now, it's a todo
btVector3 jointAxis0local;
btVector3 jointAxis1local;
btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local);
getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local;
btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local;
btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
//this is unused for now, it's a todo
btVector3 jointAxis0local;
btVector3 jointAxis1local;
new (&m_jacAng[0]) btJacobianEntry(jointAxis0,
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getInvInertiaDiagLocal(),
m_rbB.getInvInertiaDiagLocal());
btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local);
new (&m_jacAng[1]) btJacobianEntry(jointAxis1,
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getInvInertiaDiagLocal(),
m_rbB.getInvInertiaDiagLocal());
getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local;
btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local;
btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
new (&m_jacAng[0]) btJacobianEntry(jointAxis0,
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getInvInertiaDiagLocal(),
m_rbB.getInvInertiaDiagLocal());
new (&m_jacAng[2]) btJacobianEntry(hingeAxisWorld,
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getInvInertiaDiagLocal(),
m_rbB.getInvInertiaDiagLocal());
new (&m_jacAng[1]) btJacobianEntry(jointAxis1,
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getInvInertiaDiagLocal(),
m_rbB.getInvInertiaDiagLocal());
new (&m_jacAng[2]) btJacobianEntry(hingeAxisWorld,
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getInvInertiaDiagLocal(),
m_rbB.getInvInertiaDiagLocal());
// Compute limit information
btScalar hingeAngle = getHingeAngle();
// Compute limit information
btScalar hingeAngle = getHingeAngle();
//set bias, sign, clear accumulator
m_correction = btScalar(0.);
m_limitSign = btScalar(0.);
m_solveLimit = false;
m_accLimitImpulse = btScalar(0.);
//set bias, sign, clear accumulator
m_correction = btScalar(0.);
m_limitSign = btScalar(0.);
m_solveLimit = false;
m_accLimitImpulse = btScalar(0.);
// if (m_lowerLimit < m_upperLimit)
if (m_lowerLimit <= m_upperLimit)
{
// if (hingeAngle <= m_lowerLimit*m_limitSoftness)
if (hingeAngle <= m_lowerLimit)
// if (m_lowerLimit < m_upperLimit)
if (m_lowerLimit <= m_upperLimit)
{
m_correction = (m_lowerLimit - hingeAngle);
m_limitSign = 1.0f;
m_solveLimit = true;
}
// else if (hingeAngle >= m_upperLimit*m_limitSoftness)
else if (hingeAngle >= m_upperLimit)
{
m_correction = m_upperLimit - hingeAngle;
m_limitSign = -1.0f;
m_solveLimit = true;
// if (hingeAngle <= m_lowerLimit*m_limitSoftness)
if (hingeAngle <= m_lowerLimit)
{
m_correction = (m_lowerLimit - hingeAngle);
m_limitSign = 1.0f;
m_solveLimit = true;
}
// else if (hingeAngle >= m_upperLimit*m_limitSoftness)
else if (hingeAngle >= m_upperLimit)
{
m_correction = m_upperLimit - hingeAngle;
m_limitSign = -1.0f;
m_solveLimit = true;
}
}
//Compute K = J*W*J' for hinge axis
btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
m_kHinge = 1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) +
getRigidBodyB().computeAngularImpulseDenominator(axisA));
}
//Compute K = J*W*J' for hinge axis
btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
m_kHinge = 1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) +
getRigidBodyB().computeAngularImpulseDenominator(axisA));
}
void btHingeConstraint::solveConstraint(btScalar timeStep)
void btHingeConstraint::getInfo1 (btConstraintInfo1* info)
{
if (m_useSolveConstraintObsolete)
{
info->m_numConstraintRows = 0;
info->nub = 0;
} else
{
btAssert(0);
}
}
void btHingeConstraint::getInfo2 (btConstraintInfo2* info)
{
btAssert(0);
}
void btHingeConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep)
{
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
btScalar tau = btScalar(0.3);
//linear part
if (!m_angularOnly)
///for backwards compatibility during the transition to 'getInfo/getInfo2'
if (m_useSolveConstraintObsolete)
{
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
btVector3 vel1 = m_rbA.getVelocityInLocalPoint(rel_pos1);
btVector3 vel2 = m_rbB.getVelocityInLocalPoint(rel_pos2);
btVector3 vel = vel1 - vel2;
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
for (int i=0;i<3;i++)
{
const btVector3& normal = m_jac[i].m_linearJointAxis;
btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();
btScalar tau = btScalar(0.3);
btScalar rel_vel;
rel_vel = normal.dot(vel);
//positional error (zeroth order error)
btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv;
m_appliedImpulse += impulse;
btVector3 impulse_vector = normal * impulse;
m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition());
m_rbB.applyImpulse(-impulse_vector, pivotBInW - m_rbB.getCenterOfMassPosition());
}
}
{
///solve angular part
// get axes in world space
btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
btVector3 axisB = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(2);
const btVector3& angVelA = getRigidBodyA().getAngularVelocity();
const btVector3& angVelB = getRigidBodyB().getAngularVelocity();
btVector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA);
btVector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB);
btVector3 angAorthog = angVelA - angVelAroundHingeAxisA;
btVector3 angBorthog = angVelB - angVelAroundHingeAxisB;
btVector3 velrelOrthog = angAorthog-angBorthog;
//linear part
if (!m_angularOnly)
{
//solve orthogonal angular velocity correction
btScalar relaxation = btScalar(1.);
btScalar len = velrelOrthog.length();
if (len > btScalar(0.00001))
{
btVector3 normal = velrelOrthog.normalized();
btScalar denom = getRigidBodyA().computeAngularImpulseDenominator(normal) +
getRigidBodyB().computeAngularImpulseDenominator(normal);
// scale for mass and relaxation
velrelOrthog *= (btScalar(1.)/denom) * m_relaxationFactor;
}
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
//solve angular positional correction
btVector3 angularError = -axisA.cross(axisB) *(btScalar(1.)/timeStep);
btScalar len2 = angularError.length();
if (len2>btScalar(0.00001))
{
btVector3 normal2 = angularError.normalized();
btScalar denom2 = getRigidBodyA().computeAngularImpulseDenominator(normal2) +
getRigidBodyB().computeAngularImpulseDenominator(normal2);
angularError *= (btScalar(1.)/denom2) * relaxation;
}
btVector3 vel1,vel2;
bodyA.getVelocityInLocalPointObsolete(rel_pos1,vel1);
bodyB.getVelocityInLocalPointObsolete(rel_pos2,vel2);
btVector3 vel = vel1 - vel2;
m_rbA.applyTorqueImpulse(-velrelOrthog+angularError);
m_rbB.applyTorqueImpulse(velrelOrthog-angularError);
for (int i=0;i<3;i++)
{
const btVector3& normal = m_jac[i].m_linearJointAxis;
btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();
// solve limit
if (m_solveLimit)
{
btScalar amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (btScalar(1.)/timeStep)*m_biasFactor ) * m_limitSign;
btScalar impulseMag = amplitude * m_kHinge;
// Clamp the accumulated impulse
btScalar temp = m_accLimitImpulse;
m_accLimitImpulse = btMax(m_accLimitImpulse + impulseMag, btScalar(0) );
impulseMag = m_accLimitImpulse - temp;
btVector3 impulse = axisA * impulseMag * m_limitSign;
m_rbA.applyTorqueImpulse(impulse);
m_rbB.applyTorqueImpulse(-impulse);
btScalar rel_vel;
rel_vel = normal.dot(vel);
//positional error (zeroth order error)
btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv;
m_appliedImpulse += impulse;
btVector3 impulse_vector = normal * impulse;
btVector3 ftorqueAxis1 = rel_pos1.cross(normal);
btVector3 ftorqueAxis2 = rel_pos2.cross(normal);
bodyA.applyImpulse(normal*m_rbA.getInvMass(), m_rbA.getInvInertiaTensorWorld()*ftorqueAxis1,impulse);
bodyB.applyImpulse(normal*m_rbB.getInvMass(), m_rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-impulse);
}
}
//apply motor
if (m_enableAngularMotor)
{
//todo: add limits too
btVector3 angularLimit(0,0,0);
///solve angular part
btVector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB;
btScalar projRelVel = velrel.dot(axisA);
// get axes in world space
btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
btVector3 axisB = getRigidBodyB().getCenterOfMassTransform().getBasis() * m_rbBFrame.getBasis().getColumn(2);
btScalar desiredMotorVel = m_motorTargetVelocity;
btScalar motor_relvel = desiredMotorVel - projRelVel;
btVector3 angVelA;
bodyA.getAngularVelocity(angVelA);
btVector3 angVelB;
bodyB.getAngularVelocity(angVelB);
btScalar unclippedMotorImpulse = m_kHinge * motor_relvel;;
//todo: should clip against accumulated impulse
btScalar clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse;
clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse;
btVector3 motorImp = clippedMotorImpulse * axisA;
btVector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA);
btVector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB);
m_rbA.applyTorqueImpulse(motorImp+angularLimit);
m_rbB.applyTorqueImpulse(-motorImp-angularLimit);
btVector3 angAorthog = angVelA - angVelAroundHingeAxisA;
btVector3 angBorthog = angVelB - angVelAroundHingeAxisB;
btVector3 velrelOrthog = angAorthog-angBorthog;
{
//solve orthogonal angular velocity correction
btScalar relaxation = btScalar(1.);
btScalar len = velrelOrthog.length();
if (len > btScalar(0.00001))
{
btVector3 normal = velrelOrthog.normalized();
btScalar denom = getRigidBodyA().computeAngularImpulseDenominator(normal) +
getRigidBodyB().computeAngularImpulseDenominator(normal);
// scale for mass and relaxation
//velrelOrthog *= (btScalar(1.)/denom) * m_relaxationFactor;
bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*velrelOrthog,-(btScalar(1.)/denom));
bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*velrelOrthog,(btScalar(1.)/denom));
}
//solve angular positional correction
btVector3 angularError = -axisA.cross(axisB) *(btScalar(1.)/timeStep);
btScalar len2 = angularError.length();
if (len2>btScalar(0.00001))
{
btVector3 normal2 = angularError.normalized();
btScalar denom2 = getRigidBodyA().computeAngularImpulseDenominator(normal2) +
getRigidBodyB().computeAngularImpulseDenominator(normal2);
//angularError *= (btScalar(1.)/denom2) * relaxation;
bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*angularError,(btScalar(1.)/denom2));
bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*angularError,-(btScalar(1.)/denom2));
}
// solve limit
if (m_solveLimit)
{
btScalar amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (btScalar(1.)/timeStep)*m_biasFactor ) * m_limitSign;
btScalar impulseMag = amplitude * m_kHinge;
// Clamp the accumulated impulse
btScalar temp = m_accLimitImpulse;
m_accLimitImpulse = btMax(m_accLimitImpulse + impulseMag, btScalar(0) );
impulseMag = m_accLimitImpulse - temp;
bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*axisA,impulseMag * m_limitSign);
bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*axisA,-(impulseMag * m_limitSign));
}
}
//apply motor
if (m_enableAngularMotor)
{
//todo: add limits too
btVector3 angularLimit(0,0,0);
btVector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB;
btScalar projRelVel = velrel.dot(axisA);
btScalar desiredMotorVel = m_motorTargetVelocity;
btScalar motor_relvel = desiredMotorVel - projRelVel;
btScalar unclippedMotorImpulse = m_kHinge * motor_relvel;;
//todo: should clip against accumulated impulse
btScalar clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse;
clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse;
btVector3 motorImp = clippedMotorImpulse * axisA;
bodyA.applyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*axisA,clippedMotorImpulse);
bodyB.applyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*axisA,-clippedMotorImpulse);
}
}
}