fix minitaur.urdf: move lower-leg inertia to center, add missing collision for one of the motors, add contact parameters for friction_anchor, spinning friction, compliance (stiffness/damping)

fix in indexing for maximal coordinates (unused by default, still experimental, requires many iterations for Minitaur due to extreme mass-ratio, hence use of reduces/generalized coordinates)
modify quadruped.py to test maximal coordinates
wrap angular servo (positional) target within [-PI,PI] in btGeneric6DofSpring2Constraint
add 'j' key to show body frames in wireframe/debug mode
This commit is contained in:
erwincoumans
2017-09-02 01:05:42 -07:00
parent ee30479a28
commit eb97e06280
9 changed files with 281 additions and 108 deletions

View File

@@ -221,6 +221,11 @@ void MyKeyboardCallback(int key, int state)
gDebugDrawFlags ^= btIDebugDraw::DBG_NoDeactivation;
gDisableDeactivation = ((gDebugDrawFlags & btIDebugDraw::DBG_NoDeactivation) != 0);
}
if (key == 'j' && state)
{
gDebugDrawFlags ^= btIDebugDraw::DBG_DrawFrames;
}
if (key == 'k' && state)
{
gDebugDrawFlags ^= btIDebugDraw::DBG_DrawConstraints;

View File

@@ -140,7 +140,7 @@ class btGeneric6DofSpring2Constraint* MyMultiBodyCreator::createRevoluteJoint(in
dof6->setLinearUpperLimit(btVector3(0,0,0));
dof6->setAngularUpperLimit(btVector3(0,0,-1));
dof6->setAngularLowerLimit(btVector3(0,0,0));
dof6->setAngularLowerLimit(btVector3(0,0,1));
}
};

View File

@@ -396,7 +396,7 @@ template <typename T, typename U> void addJointInfoFromConstraint(int linkIndex,
info.m_linkName = 0;
info.m_flags = 0;
info.m_jointIndex = linkIndex;
info.m_qIndex = linkIndex+6;
info.m_qIndex = linkIndex+7;
info.m_uIndex = linkIndex+6;
//derive type from limits

View File

@@ -4601,7 +4601,9 @@ bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryComm
b3Printf("Using CONTROL_MODE_TORQUE");
}
// mb->clearForcesAndTorques();
int torqueIndex = 6;
///see addJointInfoFromConstraint
int velIndex = 6;
int posIndex = 7;
//if ((clientCmd.m_updateFlags&SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
for (int link=0;link<body->m_rigidBodyJoints.size();link++)
@@ -4616,14 +4618,33 @@ bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryComm
//for (int dof=0;dof<mb->getLink(link).m_dofCount;dof++)
{
double torque = 0.f;
//if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[torqueIndex]&SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
torque = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[torqueIndex];
btScalar qdotTarget = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[torqueIndex];
btScalar qTarget = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[torqueIndex];
{
int torqueIndex = velIndex;
double torque = 100;
bool hasDesiredTorque = false;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
torque = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[velIndex];
hasDesiredTorque = true;
}
bool hasDesiredPosOrVel = false;
btScalar qdotTarget = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_QDOT)!=0)
{
hasDesiredPosOrVel = true;
qdotTarget = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex];
}
btScalar qTarget = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[posIndex] & SIM_DESIRED_STATE_HAS_Q)!=0)
{
hasDesiredPosOrVel = true;
qTarget = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex];
}
con->getLinearLowerLimit(linearLowerLimit);
con->getLinearUpperLimit(linearUpperLimit);
con->getAngularLowerLimit(angularLowerLimit);
@@ -4650,30 +4671,39 @@ bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryComm
{
case CONTROL_MODE_TORQUE:
{
con->getRigidBodyA().applyTorque(torque*axisA);
con->getRigidBodyB().applyTorque(-torque*axisB);
if (hasDesiredTorque)
{
con->getRigidBodyA().applyTorque(torque*axisA);
con->getRigidBodyB().applyTorque(-torque*axisB);
}
break;
}
case CONTROL_MODE_VELOCITY:
{
con->enableMotor(3+limitAxis,true);
con->setTargetVelocity(3+limitAxis, qdotTarget);
//this is max motor force impulse
btScalar torqueImpulse = torque*m_data->m_dynamicsWorld->getSolverInfo().m_timeStep;
con->setMaxMotorForce(3+limitAxis,torqueImpulse);
if (hasDesiredPosOrVel)
{
con->enableMotor(3+limitAxis,true);
con->setTargetVelocity(3+limitAxis, qdotTarget);
//this is max motor force impulse
btScalar torqueImpulse = torque*m_data->m_dynamicsWorld->getSolverInfo().m_timeStep;
con->setMaxMotorForce(3+limitAxis,torqueImpulse);
}
break;
}
case CONTROL_MODE_POSITION_VELOCITY_PD:
{
con->setServo(3+limitAxis,true);
con->setServoTarget(3+limitAxis,qTarget);
//next one is the maximum velocity to reach target position.
//the maximum velocity is limited by maxMotorForce
con->setTargetVelocity(3+limitAxis, 100);
//this is max motor force impulse
btScalar torqueImpulse = torque*m_data->m_dynamicsWorld->getSolverInfo().m_timeStep;
con->setMaxMotorForce(3+limitAxis,torqueImpulse);
con->enableMotor(3+limitAxis,true);
if (hasDesiredPosOrVel)
{
con->setServo(3+limitAxis,true);
con->setServoTarget(3+limitAxis,-qTarget);
//next one is the maximum velocity to reach target position.
//the maximum velocity is limited by maxMotorForce
con->setTargetVelocity(3+limitAxis, 100);
//this is max motor force impulse
btScalar torqueImpulse = torque*m_data->m_dynamicsWorld->getSolverInfo().m_timeStep;
con->setMaxMotorForce(3+limitAxis,torqueImpulse);
con->enableMotor(3+limitAxis,true);
}
break;
}
default:
@@ -4733,7 +4763,10 @@ bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryComm
}
}
}//fi
torqueIndex++;
///see addJointInfoFromConstraint
velIndex ++;//info.m_uIndex
posIndex ++;//info.m_qIndex
}
}
}//fi

View File

@@ -2,34 +2,49 @@ import pybullet as p
import time
import math
useRealTime = 0
fixedTimeStep = 0.01
toeConstraint = True
useMaximalCoordinates = True
useRealTime = 1
#the fixedTimeStep and numSolverIterations are the most important parameters to trade-off quality versus performance
fixedTimeStep = 1./100
numSolverIterations = 50
if (useMaximalCoordinates):
fixedTimeStep = 1./500
numSolverIterations = 200
speed = 10
amplitude = 0.8
jump_amp = 0.5
maxForce = 3.5
kneeFrictionForce = 0.00
kneeFrictionForce = 0
kp = 1
kd = .1
kd = .5
maxKneeForce = 1000
physId = p.connect(p.SHARED_MEMORY)
if (physId<0):
p.connect(p.GUI)
#p.resetSimulation()
p.loadURDF("plane.urdf",0,0,0)
p.setPhysicsEngineParameter(numSolverIterations=50)
angle = 0 # pick in range 0..0.2 radians
orn = p.getQuaternionFromEuler([0,angle,0])
p.loadURDF("plane.urdf",[0,0,0],orn)
p.setPhysicsEngineParameter(numSolverIterations=numSolverIterations)
p.startStateLogging(p.STATE_LOGGING_GENERIC_ROBOT, "genericlogdata.bin", maxLogDof = 16, logFlags = p.STATE_LOG_JOINT_TORQUES)
p.setTimeOut(4)
p.setTimeOut(4000000)
p.setGravity(0,0,0)
p.setTimeStep(fixedTimeStep)
orn = p.getQuaternionFromEuler([0,0,0.4])
p.setRealTimeSimulation(0)
quadruped = p.loadURDF("quadruped/minitaur.urdf",[1,0,0.2],orn,useFixedBase=False)
quadruped = p.loadURDF("quadruped/minitaur.urdf",[1,-1,.3],orn,useFixedBase=False, useMaximalCoordinates=useMaximalCoordinates)
nJoints = p.getNumJoints(quadruped)
jointNameToId = {}
for i in range(nJoints):
jointInfo = p.getJointInfo(quadruped, i)
@@ -37,11 +52,11 @@ for i in range(nJoints):
motor_front_rightR_joint = jointNameToId['motor_front_rightR_joint']
motor_front_rightL_joint = jointNameToId['motor_front_rightL_joint']
knee_front_rightL_link = jointNameToId['knee_front_rightL_link']
hip_front_rightR_link = jointNameToId['hip_front_rightR_link']
knee_front_rightR_link = jointNameToId['knee_front_rightR_link']
motor_front_rightL_joint = jointNameToId['motor_front_rightL_joint']
motor_front_rightL_link = jointNameToId['motor_front_rightL_link']
knee_front_rightL_link = jointNameToId['knee_front_rightL_link']
motor_front_leftR_joint = jointNameToId['motor_front_leftR_joint']
hip_front_leftR_link = jointNameToId['hip_front_leftR_link']
knee_front_leftR_link = jointNameToId['knee_front_leftR_link']
@@ -61,51 +76,83 @@ motor_back_leftL_joint = jointNameToId['motor_back_leftL_joint']
motor_back_leftL_link = jointNameToId['motor_back_leftL_link']
knee_back_leftL_link = jointNameToId['knee_back_leftL_link']
#fixtorso = p.createConstraint(-1,-1,quadruped,-1,p.JOINT_FIXED,[0,0,0],[0,0,0],[0,0,0])
motordir=[-1,-1,-1,-1,1,1,1,1]
halfpi = 1.57079632679
twopi = 4*halfpi
kneeangle = -2.1834
p.resetJointState(quadruped,motor_front_leftL_joint,motordir[0]*halfpi)
p.resetJointState(quadruped,knee_front_leftL_link,motordir[0]*kneeangle)
p.resetJointState(quadruped,motor_front_leftR_joint,motordir[1]*halfpi)
p.resetJointState(quadruped,knee_front_leftR_link,motordir[1]*kneeangle)
cid = p.createConstraint(quadruped,knee_front_leftR_link,quadruped,knee_front_leftL_link,p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
p.changeConstraint(cid,maxForce=10000)
p.setJointMotorControl(quadruped,knee_front_leftL_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_front_leftR_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.resetJointState(quadruped,motor_back_leftL_joint,motordir[2]*halfpi)
p.resetJointState(quadruped,knee_back_leftL_link,motordir[2]*kneeangle)
p.resetJointState(quadruped,motor_back_leftR_joint,motordir[3]*halfpi)
p.resetJointState(quadruped,knee_back_leftR_link,motordir[3]*kneeangle)
cid = p.createConstraint(quadruped,knee_back_leftR_link,quadruped,knee_back_leftL_link,p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
p.changeConstraint(cid,maxForce=10000)
p.setJointMotorControl(quadruped,knee_back_leftL_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_back_leftR_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
if (useMaximalCoordinates):
steps = 400
for aa in range (steps):
p.setJointMotorControl2(quadruped,motor_front_leftL_joint,p.POSITION_CONTROL,motordir[0]*halfpi*float(aa)/steps)
p.setJointMotorControl2(quadruped,motor_front_leftR_joint,p.POSITION_CONTROL,motordir[1]*halfpi*float(aa)/steps)
p.setJointMotorControl2(quadruped,motor_back_leftL_joint,p.POSITION_CONTROL,motordir[2]*halfpi*float(aa)/steps)
p.setJointMotorControl2(quadruped,motor_back_leftR_joint,p.POSITION_CONTROL,motordir[3]*halfpi*float(aa)/steps)
p.setJointMotorControl2(quadruped,motor_front_rightL_joint,p.POSITION_CONTROL,motordir[4]*halfpi*float(aa)/steps)
p.setJointMotorControl2(quadruped,motor_front_rightR_joint,p.POSITION_CONTROL,motordir[5]*halfpi*float(aa)/steps)
p.setJointMotorControl2(quadruped,motor_back_rightL_joint,p.POSITION_CONTROL,motordir[6]*halfpi*float(aa)/steps)
p.setJointMotorControl2(quadruped,motor_back_rightR_joint,p.POSITION_CONTROL,motordir[7]*halfpi*float(aa)/steps)
p.setJointMotorControl2(quadruped,knee_front_leftL_link,p.POSITION_CONTROL,motordir[0]*(kneeangle+twopi)*float(aa)/steps)
p.setJointMotorControl2(quadruped,knee_front_leftR_link,p.POSITION_CONTROL,motordir[1]*kneeangle*float(aa)/steps)
p.setJointMotorControl2(quadruped,knee_back_leftL_link,p.POSITION_CONTROL,motordir[2]*kneeangle*float(aa)/steps)
p.setJointMotorControl2(quadruped,knee_back_leftR_link,p.POSITION_CONTROL,motordir[3]*(kneeangle+twopi)*float(aa)/steps)
p.setJointMotorControl2(quadruped,knee_front_rightL_link,p.POSITION_CONTROL,motordir[4]*(kneeangle)*float(aa)/steps)
p.setJointMotorControl2(quadruped,knee_front_rightR_link,p.POSITION_CONTROL,motordir[5]*(kneeangle+twopi)*float(aa)/steps)
p.setJointMotorControl2(quadruped,knee_back_rightL_link,p.POSITION_CONTROL,motordir[6]*(kneeangle+twopi)*float(aa)/steps)
p.setJointMotorControl2(quadruped,knee_back_rightR_link,p.POSITION_CONTROL,motordir[7]*kneeangle*float(aa)/steps)
p.stepSimulation()
#time.sleep(fixedTimeStep)
else:
p.resetJointState(quadruped,motor_front_leftL_joint,motordir[0]*halfpi)
p.resetJointState(quadruped,knee_front_leftL_link,motordir[0]*kneeangle)
p.resetJointState(quadruped,motor_front_leftR_joint,motordir[1]*halfpi)
p.resetJointState(quadruped,knee_front_leftR_link,motordir[1]*kneeangle)
p.resetJointState(quadruped,motor_back_leftL_joint,motordir[2]*halfpi)
p.resetJointState(quadruped,knee_back_leftL_link,motordir[2]*kneeangle)
p.resetJointState(quadruped,motor_back_leftR_joint,motordir[3]*halfpi)
p.resetJointState(quadruped,knee_back_leftR_link,motordir[3]*kneeangle)
p.resetJointState(quadruped,motor_front_rightL_joint,motordir[4]*halfpi)
p.resetJointState(quadruped,knee_front_rightL_link,motordir[4]*kneeangle)
p.resetJointState(quadruped,motor_front_rightR_joint,motordir[5]*halfpi)
p.resetJointState(quadruped,knee_front_rightR_link,motordir[5]*kneeangle)
p.resetJointState(quadruped,motor_back_rightL_joint,motordir[6]*halfpi)
p.resetJointState(quadruped,knee_back_rightL_link,motordir[6]*kneeangle)
p.resetJointState(quadruped,motor_back_rightR_joint,motordir[7]*halfpi)
p.resetJointState(quadruped,knee_back_rightR_link,motordir[7]*kneeangle)
#p.getNumJoints(1)
p.resetJointState(quadruped,motor_front_rightL_joint,motordir[4]*halfpi)
p.resetJointState(quadruped,knee_front_rightL_link,motordir[4]*kneeangle)
p.resetJointState(quadruped,motor_front_rightR_joint,motordir[5]*halfpi)
p.resetJointState(quadruped,knee_front_rightR_link,motordir[5]*kneeangle)
cid = p.createConstraint(quadruped,knee_front_rightR_link,quadruped,knee_front_rightL_link,p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
p.changeConstraint(cid,maxForce=10000)
p.setJointMotorControl(quadruped,knee_front_rightL_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_front_rightR_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.resetJointState(quadruped,motor_back_rightL_joint,motordir[6]*halfpi)
p.resetJointState(quadruped,knee_back_rightL_link,motordir[6]*kneeangle)
p.resetJointState(quadruped,motor_back_rightR_joint,motordir[7]*halfpi)
p.resetJointState(quadruped,knee_back_rightR_link,motordir[7]*kneeangle)
cid = p.createConstraint(quadruped,knee_back_rightR_link,quadruped,knee_back_rightL_link,p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
p.changeConstraint(cid,maxForce=10000)
p.setJointMotorControl(quadruped,knee_back_rightL_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_back_rightR_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
if (toeConstraint):
cid = p.createConstraint(quadruped,knee_front_leftR_link,quadruped,knee_front_leftL_link,p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.1],[0,0.01,0.1])
p.changeConstraint(cid,maxForce=maxKneeForce)
cid = p.createConstraint(quadruped,knee_front_rightR_link,quadruped,knee_front_rightL_link,p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.1],[0,0.01,0.1])
p.changeConstraint(cid,maxForce=maxKneeForce)
cid = p.createConstraint(quadruped,knee_back_leftR_link,quadruped,knee_back_leftL_link,p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.1],[0,0.01,0.1])
p.changeConstraint(cid,maxForce=maxKneeForce)
cid = p.createConstraint(quadruped,knee_back_rightR_link,quadruped,knee_back_rightL_link,p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.1],[0,0.01,0.1])
p.changeConstraint(cid,maxForce=maxKneeForce)
if (1):
p.setJointMotorControl(quadruped,knee_front_leftL_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_front_leftR_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_front_rightL_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_front_rightR_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_back_leftL_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_back_leftR_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_back_leftL_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_back_leftR_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_back_rightL_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_back_rightR_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setGravity(0,0,-10)
@@ -135,10 +182,18 @@ p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[7],controlMo
#stand still
p.setRealTimeSimulation(useRealTime)
#while (True):
# time.sleep(0.01)
#p.stepSimulation()
t = 0.0
t_end = t + 15
ref_time = time.time()
while (t<t_end):
if (useRealTime):
t = time.time()-ref_time
else:
t = t+fixedTimeStep
if (useRealTime==0):
p.stepSimulation()
time.sleep(fixedTimeStep)
print("quadruped Id = ")
print(quadruped)
@@ -156,7 +211,7 @@ t_end = t + 100
i=0
ref_time = time.time()
for aa in range (100):
while (1):
if (useRealTime):
t = time.time()-ref_time
else: