export contact friction/damping through URDF and API

convert from contact friction/damping to cfm/erp
btCollisionObject::setContactFrictionAndDamping
This commit is contained in:
Erwin Coumans
2016-09-02 16:40:56 -07:00
parent 23f7293a25
commit ecd814c9c5
19 changed files with 269 additions and 125 deletions

View File

@@ -224,11 +224,34 @@ void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySol
relaxation = infoGlobal.m_sor;
btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
btScalar cfm = (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM)?cp.m_contactCFM:infoGlobal.m_globalCfm;
cfm *= invTimeStep;
btScalar erp = (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP)?cp.m_contactERP:infoGlobal.m_erp2;
//cfm = 1 / ( dt * kp + kd )
//erp = dt * kp / ( dt * kp + kd )
btScalar cfm = infoGlobal.m_globalCfm;
btScalar erp = infoGlobal.m_erp2;
if ((cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM) || (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP))
{
if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM)
cfm = cp.m_contactCFM;
if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP)
erp = cp.m_contactERP;
} else
{
if (cp.m_contactPointFlags & BT_CONTACT_FLAG_CONTACT_STIFFNESS_DAMPING)
{
btScalar denom = ( infoGlobal.m_timeStep * cp.m_combinedContactStiffness1 + cp.m_combinedContactDamping1 );
if (denom < SIMD_EPSILON)
{
denom = SIMD_EPSILON;
}
cfm = btScalar(1) / denom;
erp = (infoGlobal.m_timeStep * cp.m_combinedContactStiffness1) / denom;
}
}
cfm *= invTimeStep;
@@ -565,12 +588,6 @@ void btMultiBodyConstraintSolver::setupMultiBodyRollingFrictionConstraint(btMult
relaxation = infoGlobal.m_sor;
btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
btScalar cfm = (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM)?cp.m_contactCFM:infoGlobal.m_globalCfm;
cfm *= invTimeStep;
btScalar erp = (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP)?cp.m_contactERP:infoGlobal.m_erp2;
if (multiBodyA)
@@ -713,7 +730,7 @@ void btMultiBodyConstraintSolver::setupMultiBodyRollingFrictionConstraint(btMult
btScalar d = denom0+denom1+cfm;
btScalar d = denom0+denom1+infoGlobal.m_globalCfm;
if (d>SIMD_EPSILON)
{
solverConstraint.m_jacDiagABInv = relaxation/(d);
@@ -731,7 +748,7 @@ void btMultiBodyConstraintSolver::setupMultiBodyRollingFrictionConstraint(btMult
btScalar restitution = 0.f;
btScalar penetration = isFriction? 0 : cp.getDistance()+infoGlobal.m_linearSlop;
btScalar penetration = isFriction? 0 : cp.getDistance();
btScalar rel_vel = 0.f;
int ndofA = 0;
@@ -790,15 +807,9 @@ void btMultiBodyConstraintSolver::setupMultiBodyRollingFrictionConstraint(btMult
if (penetration>0)
{
positionalError = 0;
velocityError -= penetration / infoGlobal.m_timeStep;
} else
{
positionalError = -penetration * erp/infoGlobal.m_timeStep;
}
}
btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
btScalar velocityImpulse = velocityError*solverConstraint.m_jacDiagABInv;
solverConstraint.m_rhs = velocityImpulse;
@@ -806,7 +817,7 @@ void btMultiBodyConstraintSolver::setupMultiBodyRollingFrictionConstraint(btMult
solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
solverConstraint.m_upperLimit = solverConstraint.m_friction;
solverConstraint.m_cfm = cfm*solverConstraint.m_jacDiagABInv;
solverConstraint.m_cfm = infoGlobal.m_globalCfm*solverConstraint.m_jacDiagABInv;
@@ -951,45 +962,6 @@ void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold*
#define ENABLE_FRICTION
#ifdef ENABLE_FRICTION
solverConstraint.m_frictionIndex = frictionIndex;
//#define ROLLING_FRICTION
#ifdef ROLLING_FRICTION
int rollingFriction=1;
btVector3 angVelA(0,0,0),angVelB(0,0,0);
if (mbA)
angVelA = mbA->getVelocityVector()>getLink(fcA->m_link).l>getAngularVelocity();
if (mbB)
angVelB = mbB->getAngularVelocity();
btVector3 relAngVel = angVelB-angVelA;
if ((cp.m_combinedRollingFriction>0.f) && (rollingFriction>0))
{
//disabled: only a single rollingFriction per manifold
//rollingFriction--;
if (relAngVel.length()>infoGlobal.m_singleAxisRollingFrictionThreshold)
{
relAngVel.normalize();
applyAnisotropicFriction(colObj0,relAngVel,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
applyAnisotropicFriction(colObj1,relAngVel,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
if (relAngVel.length()>0.001)
addRollingFrictionConstraint(relAngVel,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
} else
{
addRollingFrictionConstraint(cp.m_normalWorldOnB,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
btVector3 axis0,axis1;
btPlaneSpace1(cp.m_normalWorldOnB,axis0,axis1);
applyAnisotropicFriction(colObj0,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
applyAnisotropicFriction(colObj1,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
applyAnisotropicFriction(colObj0,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
applyAnisotropicFriction(colObj1,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
if (axis0.length()>0.001)
addRollingFrictionConstraint(axis0,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
if (axis1.length()>0.001)
addRollingFrictionConstraint(axis1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
}
}
#endif //ROLLING_FRICTION
///Bullet has several options to set the friction directions
///By default, each contact has only a single friction direction that is recomputed automatically every frame