prepare to train racecar using ZED camera pixels (CNN+DQN)

This commit is contained in:
Erwin Coumans
2017-06-13 16:04:50 -07:00
parent 0958e8f473
commit ee8fd56c5e
6 changed files with 228 additions and 3 deletions

View File

@@ -0,0 +1,38 @@
import gym
from envs.bullet.racecarZEDGymEnv import RacecarZEDGymEnv
from baselines import deepq
import datetime
def callback(lcl, glb):
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
is_solved = totalt > 2000 and total >= -50
return is_solved
def main():
env = RacecarZEDGymEnv(renders=False)
model = deepq.models.mlp([64])
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=10000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback
)
print("Saving model to racecar_model.pkl")
act.save("racecar_model.pkl")
if __name__ == '__main__':
main()