prepare to train racecar using ZED camera pixels (CNN+DQN)

This commit is contained in:
Erwin Coumans
2017-06-13 16:04:50 -07:00
parent 0958e8f473
commit ee8fd56c5e
6 changed files with 228 additions and 3 deletions

View File

@@ -863,8 +863,8 @@ void PhysicsClientExample::stepSimulation(float deltaTime)
{
int xIndex = int(float(i)*(float(imageData.m_pixelWidth)/float(camVisualizerWidth)));
int yIndex = int(float(j)*(float(imageData.m_pixelHeight)/float(camVisualizerHeight)));
btClamp(yIndex,0,imageData.m_pixelHeight);
btClamp(xIndex,0,imageData.m_pixelWidth);
btClamp(yIndex,0,imageData.m_pixelHeight);
if (m_canvasDepthIndex >=0)
{

View File

@@ -1878,8 +1878,8 @@ void PhysicsServerExample::updateGraphics()
{
int xIndex = int(float(i)*(float(m_multiThreadedHelper->m_destinationWidth)/float(gCamVisualizerWidth)));
int yIndex = int(float(j)*(float(m_multiThreadedHelper->m_destinationHeight)/float(gCamVisualizerHeight)));
btClamp(yIndex,0,m_multiThreadedHelper->m_destinationWidth);
btClamp(xIndex,0,m_multiThreadedHelper->m_destinationHeight);
btClamp(xIndex,0,m_multiThreadedHelper->m_destinationWidth);
btClamp(yIndex,0,m_multiThreadedHelper->m_destinationHeight);
int bytesPerPixel = 4; //RGBA
if (m_canvasRGBIndex >=0)

View File

@@ -0,0 +1,26 @@
import gym
from envs.bullet.racecarZEDGymEnv import RacecarZEDGymEnv
from baselines import deepq
def main():
env = RacecarZEDGymEnv(renders=True)
act = deepq.load("racecar_model.pkl")
print(act)
while True:
obs, done = env.reset(), False
print("===================================")
print("obs")
print(obs)
episode_rew = 0
while not done:
env.render()
obs, rew, done, _ = env.step(act(obs[None])[0])
episode_rew += rew
print("Episode reward", episode_rew)
if __name__ == '__main__':
main()

View File

@@ -22,3 +22,10 @@ register(
timestep_limit=1000,
reward_threshold=5.0,
)
register(
id='RacecarZedBulletEnv-v0',
entry_point='envs.bullet:RacecarZEDGymEnv',
timestep_limit=1000,
reward_threshold=5.0,
)

View File

@@ -0,0 +1,154 @@
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet as p
from . import racecar
import random
class RacecarZEDGymEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self,
urdfRoot="",
actionRepeat=50,
isEnableSelfCollision=True,
renders=True):
print("init")
self._timeStep = 0.01
self._urdfRoot = urdfRoot
self._actionRepeat = actionRepeat
self._isEnableSelfCollision = isEnableSelfCollision
self._observation = []
self._ballUniqueId = -1
self._envStepCounter = 0
self._renders = renders
self._p = p
if self._renders:
p.connect(p.GUI)
else:
p.connect(p.DIRECT)
self._seed()
self.reset()
observationDim = len(self.getExtendedObservation())
#print("observationDim")
#print(observationDim)
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
self.action_space = spaces.Discrete(6)
self.observation_space = spaces.Box(-observation_high, observation_high)
self.viewer = None
def _reset(self):
p.resetSimulation()
#p.setPhysicsEngineParameter(numSolverIterations=300)
p.setTimeStep(self._timeStep)
#p.loadURDF("%splane.urdf" % self._urdfRoot)
stadiumobjects = p.loadSDF("%sstadium.sdf" % self._urdfRoot)
#move the stadium objects slightly above 0
for i in stadiumobjects:
pos,orn = p.getBasePositionAndOrientation(i)
newpos = [pos[0],pos[1],pos[2]+0.1]
p.resetBasePositionAndOrientation(i,newpos,orn)
dist = 5 +2.*random.random()
ang = 2.*3.1415925438*random.random()
ballx = dist * math.sin(ang)
bally = dist * math.cos(ang)
ballz = 1
self._ballUniqueId = p.loadURDF("sphere2.urdf",[ballx,bally,ballz])
p.setGravity(0,0,-10)
self._racecar = racecar.Racecar(urdfRootPath=self._urdfRoot, timeStep=self._timeStep)
self._envStepCounter = 0
for i in range(100):
p.stepSimulation()
self._observation = self.getExtendedObservation()
return np.array(self._observation)
def __del__(self):
p.disconnect()
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def getExtendedObservation(self):
self._observation = [] #self._racecar.getObservation()
carpos,carorn = p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
carmat = p.getMatrixFromQuaternion(carorn)
ballpos,ballorn = p.getBasePositionAndOrientation(self._ballUniqueId)
invCarPos,invCarOrn = p.invertTransform(carpos,carorn)
ballPosInCar,ballOrnInCar = p.multiplyTransforms(invCarPos,invCarOrn,ballpos,ballorn)
dist0 = 0.3
dist1 = 1.
if self._renders:
print("carpos")
print(carpos)
eyePos = carpos
print("carmat012")
print(carmat[0],carmat[1],carmat[2])
print("carmat345")
print(carmat[3],carmat[4],carmat[5])
print("carmat678")
print(carmat[6],carmat[7],carmat[8])
eyePos = [carpos[0]+dist0*carmat[0],carpos[1]+dist0*carmat[3],carpos[2]+dist0*carmat[6]+0.3]
targetPos = [carpos[0]+dist1*carmat[0],carpos[1]+dist1*carmat[3],carpos[2]+dist1*carmat[6]+0.3]
up = [0,0,1]
viewMat = p.computeViewMatrix(eyePos,targetPos,up)
#viewMat = p.computeViewMatrixFromYawPitchRoll(carpos,1,0,0,0,2)
p.getCameraImage(width=320,height=240,viewMatrix=viewMat,projectionMatrix=p.getDebugVisualizerCamera()[3],renderer=p.ER_BULLET_HARDWARE_OPENGL)
self._observation.extend([ballPosInCar[0],ballPosInCar[1]])
return self._observation
def _step(self, action):
if (self._renders):
basePos,orn = p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
#p.resetDebugVisualizerCamera(1, 30, -40, basePos)
fwd = [5,0,5,10,10,10]
steerings = [-0.5,0,0.5,-0.3,0,0.3]
forward = fwd[action]
steer = steerings[action]
realaction = [forward,steer]
self._racecar.applyAction(realaction)
for i in range(self._actionRepeat):
p.stepSimulation()
if self._renders:
time.sleep(self._timeStep)
self._observation = self.getExtendedObservation()
if self._termination():
break
self._envStepCounter += 1
reward = self._reward()
done = self._termination()
#print("len=%r" % len(self._observation))
return np.array(self._observation), reward, done, {}
def _render(self, mode='human', close=False):
return
def _termination(self):
return self._envStepCounter>1000
def _reward(self):
closestPoints = p.getClosestPoints(self._racecar.racecarUniqueId,self._ballUniqueId,10000)
numPt = len(closestPoints)
reward=-1000
#print(numPt)
if (numPt>0):
#print("reward:")
reward = -closestPoints[0][8]
#print(reward)
return reward

View File

@@ -0,0 +1,38 @@
import gym
from envs.bullet.racecarZEDGymEnv import RacecarZEDGymEnv
from baselines import deepq
import datetime
def callback(lcl, glb):
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
is_solved = totalt > 2000 and total >= -50
return is_solved
def main():
env = RacecarZEDGymEnv(renders=False)
model = deepq.models.mlp([64])
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=10000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback
)
print("Saving model to racecar_model.pkl")
act.save("racecar_model.pkl")
if __name__ == '__main__':
main()