unified btMultiBodyConstrained::fillMultiBodyConstraint..(...) mtds + cleaned some of the earlier dirty changes (6DoF grabbing constraint stuff mainly)
This commit is contained in:
@@ -40,579 +40,42 @@ btMultiBodyConstraint::~btMultiBodyConstraint()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
btScalar btMultiBodyConstraint::fillConstraintRowMultiBodyMultiBody(btMultiBodySolverConstraint& constraintRow,
|
||||
btMultiBodyJacobianData& data,
|
||||
btScalar* jacOrgA,btScalar* jacOrgB,
|
||||
const btContactSolverInfo& infoGlobal,
|
||||
btScalar desiredVelocity,
|
||||
btScalar lowerLimit,
|
||||
btScalar upperLimit)
|
||||
{
|
||||
|
||||
|
||||
|
||||
constraintRow.m_multiBodyA = m_bodyA;
|
||||
constraintRow.m_multiBodyB = m_bodyB;
|
||||
|
||||
btMultiBody* multiBodyA = constraintRow.m_multiBodyA;
|
||||
btMultiBody* multiBodyB = constraintRow.m_multiBodyB;
|
||||
|
||||
if (multiBodyA)
|
||||
{
|
||||
|
||||
const int ndofA = (multiBodyA->isMultiDof() ? multiBodyA->getNumDofs() : multiBodyA->getNumLinks()) + 6; //total dof count of tree A
|
||||
|
||||
constraintRow.m_deltaVelAindex = multiBodyA->getCompanionId();
|
||||
|
||||
if (constraintRow.m_deltaVelAindex <0) //if this multibody does not have a place allocated in m_deltaVelocities...
|
||||
{
|
||||
constraintRow.m_deltaVelAindex = data.m_deltaVelocities.size();
|
||||
multiBodyA->setCompanionId(constraintRow.m_deltaVelAindex);
|
||||
data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofA); //=> each constrained tree's dofs are represented in m_deltaVelocities
|
||||
} else
|
||||
{
|
||||
btAssert(data.m_deltaVelocities.size() >= constraintRow.m_deltaVelAindex+ndofA);
|
||||
}
|
||||
|
||||
constraintRow.m_jacAindex = data.m_jacobians.size();
|
||||
data.m_jacobians.resize(data.m_jacobians.size()+ndofA);
|
||||
data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofA); //=> each constraint row has the constrained tree dofs allocated in m_deltaVelocitiesUnitImpulse
|
||||
btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
|
||||
for (int i=0;i<ndofA;i++)
|
||||
data.m_jacobians[constraintRow.m_jacAindex+i] = jacOrgA[i];
|
||||
|
||||
btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacAindex];
|
||||
if(multiBodyA->isMultiDof())
|
||||
multiBodyA->calcAccelerationDeltasMultiDof(&data.m_jacobians[constraintRow.m_jacAindex],delta,data.scratch_r, data.scratch_v);
|
||||
else
|
||||
multiBodyA->calcAccelerationDeltas(&data.m_jacobians[constraintRow.m_jacAindex],delta,data.scratch_r, data.scratch_v);
|
||||
}
|
||||
|
||||
if (multiBodyB)
|
||||
{
|
||||
const int ndofB = (multiBodyB->isMultiDof() ? multiBodyB->getNumDofs() : multiBodyB->getNumLinks()) + 6;
|
||||
|
||||
constraintRow.m_deltaVelBindex = multiBodyB->getCompanionId();
|
||||
if (constraintRow.m_deltaVelBindex <0)
|
||||
{
|
||||
constraintRow.m_deltaVelBindex = data.m_deltaVelocities.size();
|
||||
multiBodyB->setCompanionId(constraintRow.m_deltaVelBindex);
|
||||
data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofB);
|
||||
}
|
||||
|
||||
constraintRow.m_jacBindex = data.m_jacobians.size();
|
||||
data.m_jacobians.resize(data.m_jacobians.size()+ndofB);
|
||||
|
||||
for (int i=0;i<ndofB;i++)
|
||||
data.m_jacobians[constraintRow.m_jacBindex+i] = jacOrgB[i];
|
||||
|
||||
data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
|
||||
btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
|
||||
if(multiBodyB->isMultiDof())
|
||||
multiBodyB->calcAccelerationDeltasMultiDof(&data.m_jacobians[constraintRow.m_jacBindex],&data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacBindex],data.scratch_r, data.scratch_v);
|
||||
else
|
||||
multiBodyB->calcAccelerationDeltas(&data.m_jacobians[constraintRow.m_jacBindex],&data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacBindex],data.scratch_r, data.scratch_v);
|
||||
}
|
||||
{
|
||||
|
||||
btVector3 vec;
|
||||
btScalar denom0 = 0.f;
|
||||
btScalar denom1 = 0.f;
|
||||
btScalar* jacB = 0;
|
||||
btScalar* jacA = 0;
|
||||
btScalar* lambdaA =0;
|
||||
btScalar* lambdaB =0;
|
||||
int ndofA = 0;
|
||||
if (multiBodyA)
|
||||
{
|
||||
ndofA = (multiBodyA->isMultiDof() ? multiBodyA->getNumDofs() : multiBodyA->getNumLinks()) + 6;
|
||||
jacA = &data.m_jacobians[constraintRow.m_jacAindex];
|
||||
lambdaA = &data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacAindex];
|
||||
for (int i = 0; i < ndofA; ++i)
|
||||
{
|
||||
btScalar j = jacA[i] ;
|
||||
btScalar l =lambdaA[i];
|
||||
denom0 += j*l;
|
||||
}
|
||||
}
|
||||
if (multiBodyB)
|
||||
{
|
||||
const int ndofB = (multiBodyB->isMultiDof() ? multiBodyB->getNumDofs() : multiBodyB->getNumLinks()) + 6;
|
||||
jacB = &data.m_jacobians[constraintRow.m_jacBindex];
|
||||
lambdaB = &data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacBindex];
|
||||
for (int i = 0; i < ndofB; ++i)
|
||||
{
|
||||
btScalar j = jacB[i] ;
|
||||
btScalar l =lambdaB[i];
|
||||
denom1 += j*l;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if (multiBodyA && (multiBodyA==multiBodyB))
|
||||
{
|
||||
// ndof1 == ndof2 in this case
|
||||
for (int i = 0; i < ndofA; ++i)
|
||||
{
|
||||
denom1 += jacB[i] * lambdaA[i];
|
||||
denom1 += jacA[i] * lambdaB[i];
|
||||
}
|
||||
}
|
||||
|
||||
btScalar d = denom0+denom1;
|
||||
if (btFabs(d)>SIMD_EPSILON)
|
||||
{
|
||||
|
||||
constraintRow.m_jacDiagABInv = 1.f/(d);
|
||||
} else
|
||||
{
|
||||
constraintRow.m_jacDiagABInv = 1.f;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
//compute rhs and remaining constraintRow fields
|
||||
|
||||
|
||||
|
||||
|
||||
btScalar rel_vel = 0.f;
|
||||
int ndofA = 0;
|
||||
int ndofB = 0;
|
||||
{
|
||||
|
||||
btVector3 vel1,vel2;
|
||||
if (multiBodyA)
|
||||
{
|
||||
ndofA = (multiBodyA->isMultiDof() ? multiBodyA->getNumDofs() : multiBodyA->getNumLinks()) + 6;
|
||||
btScalar* jacA = &data.m_jacobians[constraintRow.m_jacAindex];
|
||||
for (int i = 0; i < ndofA ; ++i)
|
||||
rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
|
||||
}
|
||||
if (multiBodyB)
|
||||
{
|
||||
ndofB = (multiBodyB->isMultiDof() ? multiBodyB->getNumDofs() : multiBodyB->getNumLinks()) + 6;
|
||||
btScalar* jacB = &data.m_jacobians[constraintRow.m_jacBindex];
|
||||
for (int i = 0; i < ndofB ; ++i)
|
||||
rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
|
||||
|
||||
}
|
||||
for (int i = 6; i < ndofA ; ++i)
|
||||
printf("%.4f ", multiBodyA->getVelocityVector()[i]);
|
||||
printf("\nrel_vel = %.4f\n------------\n", rel_vel);
|
||||
constraintRow.m_friction = 0.f;
|
||||
|
||||
constraintRow.m_appliedImpulse = 0.f;
|
||||
constraintRow.m_appliedPushImpulse = 0.f;
|
||||
|
||||
btScalar velocityError = desiredVelocity - rel_vel;// * damping;
|
||||
|
||||
btScalar erp = infoGlobal.m_erp2;
|
||||
|
||||
btScalar velocityImpulse = velocityError *constraintRow.m_jacDiagABInv;
|
||||
|
||||
if (!infoGlobal.m_splitImpulse)
|
||||
{
|
||||
//combine position and velocity into rhs
|
||||
constraintRow.m_rhs = velocityImpulse;
|
||||
constraintRow.m_rhsPenetration = 0.f;
|
||||
|
||||
} else
|
||||
{
|
||||
//split position and velocity into rhs and m_rhsPenetration
|
||||
constraintRow.m_rhs = velocityImpulse;
|
||||
constraintRow.m_rhsPenetration = 0.f;
|
||||
}
|
||||
|
||||
|
||||
constraintRow.m_cfm = 0.f;
|
||||
constraintRow.m_lowerLimit = lowerLimit;
|
||||
constraintRow.m_upperLimit = upperLimit;
|
||||
|
||||
}
|
||||
return rel_vel;
|
||||
}
|
||||
|
||||
|
||||
void btMultiBodyConstraint::applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
|
||||
{
|
||||
for (int i = 0; i < ndof; ++i)
|
||||
data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
|
||||
}
|
||||
|
||||
|
||||
void btMultiBodyConstraint::fillMultiBodyConstraintMixed_old(btMultiBodySolverConstraint& solverConstraint,
|
||||
btMultiBodyJacobianData& data,
|
||||
const btVector3& contactNormalOnB,
|
||||
const btVector3& posAworld, const btVector3& posBworld,
|
||||
btScalar position,
|
||||
const btContactSolverInfo& infoGlobal,
|
||||
btScalar& relaxation,
|
||||
bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
|
||||
{
|
||||
|
||||
btVector3 rel_pos1 = posAworld;
|
||||
btVector3 rel_pos2 = posBworld;
|
||||
|
||||
solverConstraint.m_multiBodyA = m_bodyA;
|
||||
solverConstraint.m_multiBodyB = m_bodyB;
|
||||
solverConstraint.m_linkA = m_linkA;
|
||||
solverConstraint.m_linkB = m_linkB;
|
||||
|
||||
|
||||
btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
|
||||
btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
|
||||
|
||||
const btVector3& pos1 = posAworld;
|
||||
const btVector3& pos2 = posBworld;
|
||||
|
||||
btSolverBody* bodyA = multiBodyA ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdA);
|
||||
btSolverBody* bodyB = multiBodyB ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdB);
|
||||
|
||||
btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
|
||||
btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
|
||||
|
||||
if (bodyA)
|
||||
rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
|
||||
if (bodyB)
|
||||
rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
|
||||
|
||||
relaxation = 1.f;
|
||||
|
||||
if (multiBodyA)
|
||||
{
|
||||
const int ndofA = (multiBodyA->isMultiDof() ? multiBodyA->getNumDofs() : multiBodyA->getNumLinks()) + 6;
|
||||
|
||||
solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
|
||||
|
||||
if (solverConstraint.m_deltaVelAindex <0)
|
||||
{
|
||||
solverConstraint.m_deltaVelAindex = data.m_deltaVelocities.size();
|
||||
multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
|
||||
data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofA);
|
||||
} else
|
||||
{
|
||||
btAssert(data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
|
||||
}
|
||||
|
||||
#ifndef BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST
|
||||
solverConstraint.m_jacAindex = data.m_jacobians.size();
|
||||
data.m_jacobians.resize(data.m_jacobians.size()+ndofA);
|
||||
#endif
|
||||
data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
|
||||
btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
|
||||
|
||||
#ifndef BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST
|
||||
btScalar* jac1=&data.m_jacobians[solverConstraint.m_jacAindex];
|
||||
if(multiBodyA->isMultiDof())
|
||||
multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, posAworld, contactNormalOnB, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
|
||||
else
|
||||
multiBodyA->fillContactJacobian(solverConstraint.m_linkA, posAworld, contactNormalOnB, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
|
||||
#endif
|
||||
btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||||
if(multiBodyA->isMultiDof())
|
||||
multiBodyA->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacAindex],delta,data.scratch_r, data.scratch_v);
|
||||
else
|
||||
multiBodyA->calcAccelerationDeltas(&data.m_jacobians[solverConstraint.m_jacAindex],delta,data.scratch_r, data.scratch_v);
|
||||
} else
|
||||
{
|
||||
btVector3 torqueAxis0 = rel_pos1.cross(contactNormalOnB);
|
||||
solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
|
||||
solverConstraint.m_relpos1CrossNormal = torqueAxis0;
|
||||
solverConstraint.m_contactNormal1 = contactNormalOnB;
|
||||
}
|
||||
|
||||
if (multiBodyB)
|
||||
{
|
||||
const int ndofB = (multiBodyB->isMultiDof() ? multiBodyB->getNumDofs() : multiBodyB->getNumLinks()) + 6;
|
||||
|
||||
solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
|
||||
if (solverConstraint.m_deltaVelBindex <0)
|
||||
{
|
||||
solverConstraint.m_deltaVelBindex = data.m_deltaVelocities.size();
|
||||
multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
|
||||
data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofB);
|
||||
}
|
||||
|
||||
solverConstraint.m_jacBindex = data.m_jacobians.size();
|
||||
|
||||
data.m_jacobians.resize(data.m_jacobians.size()+ndofB);
|
||||
data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
|
||||
btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
|
||||
|
||||
if(multiBodyB->isMultiDof())
|
||||
multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, posBworld, -contactNormalOnB, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
|
||||
else
|
||||
multiBodyB->fillContactJacobian(solverConstraint.m_linkB, posBworld, -contactNormalOnB, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
|
||||
if(multiBodyB->isMultiDof())
|
||||
multiBodyB->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacBindex],&data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],data.scratch_r, data.scratch_v);
|
||||
else
|
||||
multiBodyB->calcAccelerationDeltas(&data.m_jacobians[solverConstraint.m_jacBindex],&data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],data.scratch_r, data.scratch_v);
|
||||
} else
|
||||
{
|
||||
btVector3 torqueAxis1 = rel_pos2.cross(contactNormalOnB);
|
||||
solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
|
||||
solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
|
||||
solverConstraint.m_contactNormal2 = -contactNormalOnB;
|
||||
}
|
||||
|
||||
{
|
||||
|
||||
btVector3 vec;
|
||||
btScalar denom0 = 0.f;
|
||||
btScalar denom1 = 0.f;
|
||||
btScalar* jacB = 0;
|
||||
btScalar* jacA = 0;
|
||||
btScalar* lambdaA =0;
|
||||
btScalar* lambdaB =0;
|
||||
int ndofA = 0;
|
||||
if (multiBodyA)
|
||||
{
|
||||
ndofA = (multiBodyA->isMultiDof() ? multiBodyA->getNumDofs() : multiBodyA->getNumLinks()) + 6;
|
||||
jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
|
||||
lambdaA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||||
for (int i = 0; i < ndofA; ++i)
|
||||
{
|
||||
btScalar j = jacA[i] ;
|
||||
btScalar l =lambdaA[i];
|
||||
denom0 += j*l;
|
||||
}
|
||||
} else
|
||||
{
|
||||
if (rb0)
|
||||
{
|
||||
vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
|
||||
denom0 = rb0->getInvMass() + contactNormalOnB.dot(vec);
|
||||
}
|
||||
}
|
||||
if (multiBodyB)
|
||||
{
|
||||
const int ndofB = (multiBodyB->isMultiDof() ? multiBodyB->getNumDofs() : multiBodyB->getNumLinks()) + 6;
|
||||
jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
|
||||
lambdaB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
|
||||
for (int i = 0; i < ndofB; ++i)
|
||||
{
|
||||
btScalar j = jacB[i] ;
|
||||
btScalar l =lambdaB[i];
|
||||
denom1 += j*l;
|
||||
}
|
||||
|
||||
} else
|
||||
{
|
||||
if (rb1)
|
||||
{
|
||||
vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
|
||||
denom1 = rb1->getInvMass() + contactNormalOnB.dot(vec);
|
||||
}
|
||||
}
|
||||
|
||||
if (multiBodyA && (multiBodyA==multiBodyB))
|
||||
{
|
||||
// ndof1 == ndof2 in this case
|
||||
for (int i = 0; i < ndofA; ++i)
|
||||
{
|
||||
denom1 += jacB[i] * lambdaA[i];
|
||||
denom1 += jacA[i] * lambdaB[i];
|
||||
}
|
||||
}
|
||||
|
||||
btScalar d = denom0+denom1;
|
||||
if (btFabs(d)>SIMD_EPSILON)
|
||||
{
|
||||
|
||||
solverConstraint.m_jacDiagABInv = relaxation/(d);
|
||||
} else
|
||||
{
|
||||
solverConstraint.m_jacDiagABInv = 1.f;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
//compute rhs and remaining solverConstraint fields
|
||||
|
||||
|
||||
|
||||
btScalar restitution = 0.f;
|
||||
btScalar penetration = isFriction? 0 : position+infoGlobal.m_linearSlop;
|
||||
|
||||
btScalar rel_vel = 0.f;
|
||||
int ndofA = 0;
|
||||
int ndofB = 0;
|
||||
{
|
||||
|
||||
btVector3 vel1,vel2;
|
||||
if (multiBodyA)
|
||||
{
|
||||
ndofA = (multiBodyA->isMultiDof() ? multiBodyA->getNumDofs() : multiBodyA->getNumLinks()) + 6;
|
||||
btScalar* jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
|
||||
for (int i = 0; i < ndofA ; ++i)
|
||||
rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
|
||||
} else
|
||||
{
|
||||
if (rb0)
|
||||
{
|
||||
rel_vel += rb0->getVelocityInLocalPoint(rel_pos1).dot(solverConstraint.m_contactNormal1);
|
||||
}
|
||||
}
|
||||
if (multiBodyB)
|
||||
{
|
||||
ndofB = (multiBodyB->isMultiDof() ? multiBodyB->getNumDofs() : multiBodyB->getNumLinks()) + 6;
|
||||
btScalar* jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
|
||||
for (int i = 0; i < ndofB ; ++i)
|
||||
rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
|
||||
|
||||
} else
|
||||
{
|
||||
if (rb1)
|
||||
{
|
||||
rel_vel += rb1->getVelocityInLocalPoint(rel_pos2).dot(solverConstraint.m_contactNormal2);
|
||||
}
|
||||
}
|
||||
|
||||
solverConstraint.m_friction = 0.f;//cp.m_combinedFriction;
|
||||
|
||||
|
||||
restitution = restitution * -rel_vel;//restitutionCurve(rel_vel, cp.m_combinedRestitution);
|
||||
if (restitution <= btScalar(0.))
|
||||
{
|
||||
restitution = 0.f;
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
///warm starting (or zero if disabled)
|
||||
/*
|
||||
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
|
||||
{
|
||||
solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
|
||||
|
||||
if (solverConstraint.m_appliedImpulse)
|
||||
{
|
||||
if (multiBodyA)
|
||||
{
|
||||
btScalar impulse = solverConstraint.m_appliedImpulse;
|
||||
btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||||
multiBodyA->applyDeltaVee(deltaV,impulse);
|
||||
applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
|
||||
} else
|
||||
{
|
||||
if (rb0)
|
||||
bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
|
||||
}
|
||||
if (multiBodyB)
|
||||
{
|
||||
btScalar impulse = solverConstraint.m_appliedImpulse;
|
||||
btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
|
||||
multiBodyB->applyDeltaVee(deltaV,impulse);
|
||||
applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
|
||||
} else
|
||||
{
|
||||
if (rb1)
|
||||
bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
|
||||
}
|
||||
}
|
||||
} else
|
||||
*/
|
||||
{
|
||||
solverConstraint.m_appliedImpulse = 0.f;
|
||||
}
|
||||
|
||||
solverConstraint.m_appliedPushImpulse = 0.f;
|
||||
|
||||
{
|
||||
|
||||
|
||||
btScalar positionalError = 0.f;
|
||||
btScalar velocityError = restitution - rel_vel;// * damping;
|
||||
|
||||
|
||||
btScalar erp = infoGlobal.m_erp2;
|
||||
if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
|
||||
{
|
||||
erp = infoGlobal.m_erp;
|
||||
}
|
||||
|
||||
//commented out on purpose, see below
|
||||
//if (penetration>0)
|
||||
//{
|
||||
// positionalError = 0;
|
||||
// velocityError = -penetration / infoGlobal.m_timeStep;
|
||||
|
||||
//} else
|
||||
//{
|
||||
// positionalError = -penetration * erp/infoGlobal.m_timeStep;
|
||||
//}
|
||||
|
||||
//we cannot assume negative penetration to be the actual penetration and positive - speculative constraint (like for normal contact constraints)
|
||||
//both are valid in general and definitely so in the case of a point2Point constraint
|
||||
positionalError = -penetration * erp/infoGlobal.m_timeStep;
|
||||
|
||||
btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
|
||||
btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
|
||||
|
||||
if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
|
||||
{
|
||||
//combine position and velocity into rhs
|
||||
solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
|
||||
solverConstraint.m_rhsPenetration = 0.f;
|
||||
|
||||
} else
|
||||
{
|
||||
//split position and velocity into rhs and m_rhsPenetration
|
||||
solverConstraint.m_rhs = velocityImpulse;
|
||||
solverConstraint.m_rhsPenetration = penetrationImpulse;
|
||||
}
|
||||
|
||||
solverConstraint.m_cfm = 0.f;
|
||||
solverConstraint.m_lowerLimit = -m_maxAppliedImpulse;
|
||||
solverConstraint.m_upperLimit = m_maxAppliedImpulse;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint& solverConstraint,
|
||||
btScalar btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint& solverConstraint,
|
||||
btMultiBodyJacobianData& data,
|
||||
btScalar* jacOrgA, btScalar* jacOrgB,
|
||||
const btVector3& contactNormalOnB,
|
||||
const btVector3& posAworld, const btVector3& posBworld,
|
||||
btScalar position,
|
||||
btScalar posError,
|
||||
const btContactSolverInfo& infoGlobal,
|
||||
btScalar& relaxation,
|
||||
btScalar lowerLimit, btScalar upperLimit,
|
||||
btScalar relaxation,
|
||||
bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
|
||||
{
|
||||
|
||||
|
||||
btVector3 rel_pos1 = posAworld;
|
||||
btVector3 rel_pos2 = posBworld;
|
||||
|
||||
solverConstraint.m_multiBodyA = m_bodyA;
|
||||
solverConstraint.m_multiBodyB = m_bodyB;
|
||||
solverConstraint.m_linkA = m_linkA;
|
||||
solverConstraint.m_linkB = m_linkB;
|
||||
|
||||
solverConstraint.m_linkB = m_linkB;
|
||||
|
||||
btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
|
||||
btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
|
||||
|
||||
const btVector3& pos1 = posAworld;
|
||||
const btVector3& pos2 = posBworld;
|
||||
|
||||
btSolverBody* bodyA = multiBodyA ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdA);
|
||||
btSolverBody* bodyB = multiBodyB ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdB);
|
||||
|
||||
btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
|
||||
btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
|
||||
|
||||
btVector3 rel_pos1, rel_pos2; //these two used to be inited to posAworld and posBworld (respectively) but it does not seem necessary
|
||||
if (bodyA)
|
||||
rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
|
||||
rel_pos1 = posAworld - bodyA->getWorldTransform().getOrigin();
|
||||
if (bodyB)
|
||||
rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
|
||||
|
||||
relaxation = 1.f;
|
||||
rel_pos2 = posBworld - bodyB->getWorldTransform().getOrigin();
|
||||
|
||||
if (multiBodyA)
|
||||
{
|
||||
@@ -630,7 +93,7 @@ void btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint
|
||||
btAssert(data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
|
||||
}
|
||||
|
||||
//determine jacobian of this 1D constraint
|
||||
//determine jacobian of this 1D constraint in terms of multibodyA's degrees of freedom
|
||||
//resize..
|
||||
solverConstraint.m_jacAindex = data.m_jacobians.size();
|
||||
data.m_jacobians.resize(data.m_jacobians.size()+ndofA);
|
||||
@@ -649,11 +112,12 @@ void btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint
|
||||
multiBodyA->fillContactJacobian(solverConstraint.m_linkA, posAworld, contactNormalOnB, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
|
||||
}
|
||||
|
||||
//determine the response of the multibody the constraint impulses of this constraint (i.e. multibody's inverse inertia with respect to this 1D constraint)
|
||||
//determine the velocity response of multibodyA to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
|
||||
//resize..
|
||||
data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofA); //=> each constraint row has the constrained tree dofs allocated in m_deltaVelocitiesUnitImpulse
|
||||
btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
|
||||
btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||||
|
||||
//determine..
|
||||
if(multiBodyA->isMultiDof())
|
||||
multiBodyA->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacAindex],delta,data.scratch_r, data.scratch_v);
|
||||
else
|
||||
@@ -679,7 +143,7 @@ void btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint
|
||||
data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofB);
|
||||
}
|
||||
|
||||
//determine jacobian of this 1D constraint
|
||||
//determine jacobian of this 1D constraint in terms of multibodyB's degrees of freedom
|
||||
//resize..
|
||||
solverConstraint.m_jacBindex = data.m_jacobians.size();
|
||||
data.m_jacobians.resize(data.m_jacobians.size()+ndofB);
|
||||
@@ -697,7 +161,7 @@ void btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint
|
||||
multiBodyB->fillContactJacobian(solverConstraint.m_linkB, posBworld, -contactNormalOnB, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
|
||||
}
|
||||
|
||||
//determine the response of the multibody the constraint impulses of this constraint (i.e. multibody's inverse inertia with respect to this 1D constraint)
|
||||
//determine velocity response of multibodyB to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
|
||||
//resize..
|
||||
data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
|
||||
btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
|
||||
@@ -716,7 +180,6 @@ void btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint
|
||||
solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
|
||||
solverConstraint.m_contactNormal2 = -contactNormalOnB;
|
||||
}
|
||||
|
||||
{
|
||||
|
||||
btVector3 vec;
|
||||
@@ -724,78 +187,72 @@ void btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint
|
||||
btScalar denom1 = 0.f;
|
||||
btScalar* jacB = 0;
|
||||
btScalar* jacA = 0;
|
||||
btScalar* lambdaA =0;
|
||||
btScalar* lambdaB =0;
|
||||
btScalar* deltaVelA = 0;
|
||||
btScalar* deltaVelB = 0;
|
||||
int ndofA = 0;
|
||||
//determine the "effective mass" of the constrained multibodyA with respect to this 1D constraint (i.e. 1/A[i,i])
|
||||
if (multiBodyA)
|
||||
{
|
||||
ndofA = (multiBodyA->isMultiDof() ? multiBodyA->getNumDofs() : multiBodyA->getNumLinks()) + 6;
|
||||
jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
|
||||
lambdaA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||||
deltaVelA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||||
for (int i = 0; i < ndofA; ++i)
|
||||
{
|
||||
btScalar j = jacA[i] ;
|
||||
btScalar l =lambdaA[i];
|
||||
btScalar l = deltaVelA[i];
|
||||
denom0 += j*l;
|
||||
}
|
||||
} else
|
||||
{
|
||||
if (rb0)
|
||||
{
|
||||
vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
|
||||
denom0 = rb0->getInvMass() + contactNormalOnB.dot(vec);
|
||||
}
|
||||
}
|
||||
else if(rb0)
|
||||
{
|
||||
vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
|
||||
denom0 = rb0->getInvMass() + contactNormalOnB.dot(vec);
|
||||
}
|
||||
//
|
||||
if (multiBodyB)
|
||||
{
|
||||
const int ndofB = (multiBodyB->isMultiDof() ? multiBodyB->getNumDofs() : multiBodyB->getNumLinks()) + 6;
|
||||
jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
|
||||
lambdaB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
|
||||
deltaVelB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
|
||||
for (int i = 0; i < ndofB; ++i)
|
||||
{
|
||||
btScalar j = jacB[i] ;
|
||||
btScalar l =lambdaB[i];
|
||||
btScalar l = deltaVelB[i];
|
||||
denom1 += j*l;
|
||||
}
|
||||
|
||||
} else
|
||||
}
|
||||
else if(rb1)
|
||||
{
|
||||
if (rb1)
|
||||
vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
|
||||
denom1 = rb1->getInvMass() + contactNormalOnB.dot(vec);
|
||||
}
|
||||
//determine the "effective mass" of the constrained multibodyB with respect to this 1D constraint (i.e. 1/A[i,i])
|
||||
if (multiBodyA && (multiBodyA==multiBodyB))
|
||||
{
|
||||
// ndof1 == ndof2 in this case
|
||||
for (int i = 0; i < ndofA; ++i)
|
||||
{
|
||||
vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
|
||||
denom1 = rb1->getInvMass() + contactNormalOnB.dot(vec);
|
||||
denom1 += jacB[i] * deltaVelA[i];
|
||||
denom1 += jacA[i] * deltaVelB[i];
|
||||
}
|
||||
}
|
||||
|
||||
if (multiBodyA && (multiBodyA==multiBodyB))
|
||||
{
|
||||
// ndof1 == ndof2 in this case
|
||||
for (int i = 0; i < ndofA; ++i)
|
||||
{
|
||||
denom1 += jacB[i] * lambdaA[i];
|
||||
denom1 += jacA[i] * lambdaB[i];
|
||||
}
|
||||
}
|
||||
|
||||
btScalar d = denom0+denom1;
|
||||
if (btFabs(d)>SIMD_EPSILON)
|
||||
{
|
||||
//
|
||||
btScalar d = denom0+denom1;
|
||||
if (btFabs(d)>SIMD_EPSILON)
|
||||
{
|
||||
|
||||
solverConstraint.m_jacDiagABInv = relaxation/(d);
|
||||
} else
|
||||
{
|
||||
solverConstraint.m_jacDiagABInv = relaxation/(d);
|
||||
}
|
||||
else
|
||||
{
|
||||
solverConstraint.m_jacDiagABInv = 1.f;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//compute rhs and remaining solverConstraint fields
|
||||
|
||||
|
||||
|
||||
btScalar restitution = 0.f;
|
||||
btScalar penetration = isFriction? 0 : position+infoGlobal.m_linearSlop;
|
||||
btScalar penetration = isFriction? 0 : posError+infoGlobal.m_linearSlop;
|
||||
|
||||
btScalar rel_vel = 0.f;
|
||||
int ndofA = 0;
|
||||
@@ -827,13 +284,6 @@ void btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint
|
||||
}
|
||||
|
||||
solverConstraint.m_friction = 0.f;//cp.m_combinedFriction;
|
||||
|
||||
|
||||
restitution = restitution * -rel_vel;//restitutionCurve(rel_vel, cp.m_combinedRestitution);
|
||||
if (restitution <= btScalar(0.))
|
||||
{
|
||||
restitution = 0.f;
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
@@ -870,17 +320,14 @@ void btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint
|
||||
}
|
||||
} else
|
||||
*/
|
||||
{
|
||||
solverConstraint.m_appliedImpulse = 0.f;
|
||||
}
|
||||
|
||||
solverConstraint.m_appliedImpulse = 0.f;
|
||||
solverConstraint.m_appliedPushImpulse = 0.f;
|
||||
|
||||
{
|
||||
|
||||
{
|
||||
|
||||
btScalar positionalError = 0.f;
|
||||
btScalar velocityError = restitution - rel_vel;// * damping;
|
||||
btScalar velocityError = desiredVelocity - rel_vel;// * damping;
|
||||
|
||||
|
||||
btScalar erp = infoGlobal.m_erp2;
|
||||
@@ -889,19 +336,6 @@ void btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint
|
||||
erp = infoGlobal.m_erp;
|
||||
}
|
||||
|
||||
//commented out on purpose, see below
|
||||
//if (penetration>0)
|
||||
//{
|
||||
// positionalError = 0;
|
||||
// velocityError = -penetration / infoGlobal.m_timeStep;
|
||||
|
||||
//} else
|
||||
//{
|
||||
// positionalError = -penetration * erp/infoGlobal.m_timeStep;
|
||||
//}
|
||||
|
||||
//we cannot assume negative penetration to be the actual penetration and positive - speculative constraint (like for normal contact constraints)
|
||||
//both are valid in general and definitely so in the case of a point2Point constraint
|
||||
positionalError = -penetration * erp/infoGlobal.m_timeStep;
|
||||
|
||||
btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
|
||||
@@ -921,8 +355,10 @@ void btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint
|
||||
}
|
||||
|
||||
solverConstraint.m_cfm = 0.f;
|
||||
solverConstraint.m_lowerLimit = -m_maxAppliedImpulse;
|
||||
solverConstraint.m_upperLimit = m_maxAppliedImpulse;
|
||||
solverConstraint.m_lowerLimit = lowerLimit;
|
||||
solverConstraint.m_upperLimit = upperLimit;
|
||||
}
|
||||
|
||||
return rel_vel;
|
||||
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user