add yapf style and apply yapf to format all Python files

This recreates pull request #2192
This commit is contained in:
Erwin Coumans
2019-04-27 07:31:15 -07:00
parent c591735042
commit ef9570c315
347 changed files with 70304 additions and 22752 deletions

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Executable scripts for reinforcement learning."""
from __future__ import absolute_import

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Example configurations using the PPO algorithm."""
from __future__ import absolute_import
@@ -29,6 +28,7 @@ import pybullet_envs.bullet.minitaur_gym_env as minitaur_gym_env
import pybullet_envs
import tensorflow as tf
def default():
"""Default configuration for PPO."""
# General
@@ -38,10 +38,7 @@ def default():
use_gpu = False
# Network
network = networks.feed_forward_gaussian
weight_summaries = dict(
all=r'.*',
policy=r'.*/policy/.*',
value=r'.*/value/.*')
weight_summaries = dict(all=r'.*', policy=r'.*/policy/.*', value=r'.*/value/.*')
policy_layers = 200, 100
value_layers = 200, 100
init_mean_factor = 0.1
@@ -52,7 +49,7 @@ def default():
optimizer = tf.train.AdamOptimizer
update_epochs_policy = 64
update_epochs_value = 64
learning_rate = 1e-4
learning_rate = 1e-4
# Losses
discount = 0.995
kl_target = 1e-2
@@ -69,6 +66,7 @@ def pybullet_pendulum():
steps = 5e7 # 50M
return locals()
def pybullet_doublependulum():
locals().update(default())
env = 'InvertedDoublePendulumBulletEnv-v0'
@@ -76,6 +74,7 @@ def pybullet_doublependulum():
steps = 5e7 # 50M
return locals()
def pybullet_pendulumswingup():
locals().update(default())
env = 'InvertedPendulumSwingupBulletEnv-v0'
@@ -83,6 +82,7 @@ def pybullet_pendulumswingup():
steps = 5e7 # 50M
return locals()
def pybullet_cheetah():
"""Configuration for MuJoCo's half cheetah task."""
locals().update(default())
@@ -92,6 +92,7 @@ def pybullet_cheetah():
steps = 1e8 # 100M
return locals()
def pybullet_ant():
locals().update(default())
env = 'AntBulletEnv-v0'
@@ -99,6 +100,7 @@ def pybullet_ant():
steps = 5e7 # 50M
return locals()
def pybullet_kuka_grasping():
"""Configuration for Bullet Kuka grasping task."""
locals().update(default())
@@ -113,7 +115,7 @@ def pybullet_racecar():
"""Configuration for Bullet MIT Racecar task."""
locals().update(default())
# Environment
env = 'RacecarBulletEnv-v0' #functools.partial(racecarGymEnv.RacecarGymEnv, isDiscrete=False, renders=True)
env = 'RacecarBulletEnv-v0' #functools.partial(racecarGymEnv.RacecarGymEnv, isDiscrete=False, renders=True)
max_length = 10
steps = 1e7 # 10M
return locals()
@@ -132,29 +134,27 @@ def pybullet_minitaur():
"""Configuration specific to minitaur_gym_env.MinitaurBulletEnv class."""
locals().update(default())
randomizer = (minitaur_env_randomizer.MinitaurEnvRandomizer())
env = functools.partial(
minitaur_gym_env.MinitaurBulletEnv,
accurate_motor_model_enabled=True,
motor_overheat_protection=True,
pd_control_enabled=True,
env_randomizer=randomizer,
render=False)
env = functools.partial(minitaur_gym_env.MinitaurBulletEnv,
accurate_motor_model_enabled=True,
motor_overheat_protection=True,
pd_control_enabled=True,
env_randomizer=randomizer,
render=False)
max_length = 1000
steps = 3e7 # 30M
return locals()
def pybullet_duck_minitaur():
"""Configuration specific to minitaur_gym_env.MinitaurBulletDuckEnv class."""
locals().update(default())
randomizer = (minitaur_env_randomizer.MinitaurEnvRandomizer())
env = functools.partial(
minitaur_gym_env.MinitaurBulletDuckEnv,
accurate_motor_model_enabled=True,
motor_overheat_protection=True,
pd_control_enabled=True,
env_randomizer=randomizer,
render=False)
env = functools.partial(minitaur_gym_env.MinitaurBulletDuckEnv,
accurate_motor_model_enabled=True,
motor_overheat_protection=True,
pd_control_enabled=True,
env_randomizer=randomizer,
render=False)
max_length = 1000
steps = 3e7 # 30M
return locals()

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Network definitions for the PPO algorithm."""
from __future__ import absolute_import
@@ -24,13 +23,10 @@ import operator
import tensorflow as tf
NetworkOutput = collections.namedtuple(
'NetworkOutput', 'policy, mean, logstd, value, state')
NetworkOutput = collections.namedtuple('NetworkOutput', 'policy, mean, logstd, value, state')
def feed_forward_gaussian(
config, action_size, observations, unused_length, state=None):
def feed_forward_gaussian(config, action_size, observations, unused_length, state=None):
"""Independent feed forward networks for policy and value.
The policy network outputs the mean action and the log standard deviation
@@ -50,20 +46,22 @@ def feed_forward_gaussian(
factor=config.init_mean_factor)
logstd_initializer = tf.random_normal_initializer(config.init_logstd, 1e-10)
flat_observations = tf.reshape(observations, [
tf.shape(observations)[0], tf.shape(observations)[1],
functools.reduce(operator.mul, observations.shape.as_list()[2:], 1)])
tf.shape(observations)[0],
tf.shape(observations)[1],
functools.reduce(operator.mul,
observations.shape.as_list()[2:], 1)
])
with tf.variable_scope('policy'):
x = flat_observations
for size in config.policy_layers:
x = tf.contrib.layers.fully_connected(x, size, tf.nn.relu)
mean = tf.contrib.layers.fully_connected(
x, action_size, tf.tanh,
weights_initializer=mean_weights_initializer)
logstd = tf.get_variable(
'logstd', mean.shape[2:], tf.float32, logstd_initializer)
logstd = tf.tile(
logstd[None, None],
[tf.shape(mean)[0], tf.shape(mean)[1]] + [1] * (mean.shape.ndims - 2))
mean = tf.contrib.layers.fully_connected(x,
action_size,
tf.tanh,
weights_initializer=mean_weights_initializer)
logstd = tf.get_variable('logstd', mean.shape[2:], tf.float32, logstd_initializer)
logstd = tf.tile(logstd[None, None],
[tf.shape(mean)[0], tf.shape(mean)[1]] + [1] * (mean.shape.ndims - 2))
with tf.variable_scope('value'):
x = flat_observations
for size in config.value_layers:
@@ -72,13 +70,11 @@ def feed_forward_gaussian(
mean = tf.check_numerics(mean, 'mean')
logstd = tf.check_numerics(logstd, 'logstd')
value = tf.check_numerics(value, 'value')
policy = tf.contrib.distributions.MultivariateNormalDiag(
mean, tf.exp(logstd))
policy = tf.contrib.distributions.MultivariateNormalDiag(mean, tf.exp(logstd))
return NetworkOutput(policy, mean, logstd, value, state)
def recurrent_gaussian(
config, action_size, observations, length, state=None):
def recurrent_gaussian(config, action_size, observations, length, state=None):
"""Independent recurrent policy and feed forward value networks.
The policy network outputs the mean action and the log standard deviation
@@ -100,21 +96,23 @@ def recurrent_gaussian(
logstd_initializer = tf.random_normal_initializer(config.init_logstd, 1e-10)
cell = tf.contrib.rnn.GRUBlockCell(config.policy_layers[-1])
flat_observations = tf.reshape(observations, [
tf.shape(observations)[0], tf.shape(observations)[1],
functools.reduce(operator.mul, observations.shape.as_list()[2:], 1)])
tf.shape(observations)[0],
tf.shape(observations)[1],
functools.reduce(operator.mul,
observations.shape.as_list()[2:], 1)
])
with tf.variable_scope('policy'):
x = flat_observations
for size in config.policy_layers[:-1]:
x = tf.contrib.layers.fully_connected(x, size, tf.nn.relu)
x, state = tf.nn.dynamic_rnn(cell, x, length, state, tf.float32)
mean = tf.contrib.layers.fully_connected(
x, action_size, tf.tanh,
weights_initializer=mean_weights_initializer)
logstd = tf.get_variable(
'logstd', mean.shape[2:], tf.float32, logstd_initializer)
logstd = tf.tile(
logstd[None, None],
[tf.shape(mean)[0], tf.shape(mean)[1]] + [1] * (mean.shape.ndims - 2))
mean = tf.contrib.layers.fully_connected(x,
action_size,
tf.tanh,
weights_initializer=mean_weights_initializer)
logstd = tf.get_variable('logstd', mean.shape[2:], tf.float32, logstd_initializer)
logstd = tf.tile(logstd[None, None],
[tf.shape(mean)[0], tf.shape(mean)[1]] + [1] * (mean.shape.ndims - 2))
with tf.variable_scope('value'):
x = flat_observations
for size in config.value_layers:
@@ -123,7 +121,6 @@ def recurrent_gaussian(
mean = tf.check_numerics(mean, 'mean')
logstd = tf.check_numerics(logstd, 'logstd')
value = tf.check_numerics(value, 'value')
policy = tf.contrib.distributions.MultivariateNormalDiag(
mean, tf.exp(logstd))
policy = tf.contrib.distributions.MultivariateNormalDiag(mean, tf.exp(logstd))
# assert state.shape.as_list()[0] is not None
return NetworkOutput(policy, mean, logstd, value, state)

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Proximal Policy Optimization algorithm."""
from __future__ import absolute_import

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Proximal Policy Optimization algorithm.
Based on John Schulman's implementation in Python and Theano:
@@ -49,51 +48,51 @@ class PPOAlgorithm(object):
self._is_training = is_training
self._should_log = should_log
self._config = config
self._observ_filter = normalize.StreamingNormalize(
self._batch_env.observ[0], center=True, scale=True, clip=5,
name='normalize_observ')
self._reward_filter = normalize.StreamingNormalize(
self._batch_env.reward[0], center=False, scale=True, clip=10,
name='normalize_reward')
self._observ_filter = normalize.StreamingNormalize(self._batch_env.observ[0],
center=True,
scale=True,
clip=5,
name='normalize_observ')
self._reward_filter = normalize.StreamingNormalize(self._batch_env.reward[0],
center=False,
scale=True,
clip=10,
name='normalize_reward')
# Memory stores tuple of observ, action, mean, logstd, reward.
template = (
self._batch_env.observ[0], self._batch_env.action[0],
self._batch_env.action[0], self._batch_env.action[0],
self._batch_env.reward[0])
self._memory = memory.EpisodeMemory(
template, config.update_every, config.max_length, 'memory')
template = (self._batch_env.observ[0], self._batch_env.action[0], self._batch_env.action[0],
self._batch_env.action[0], self._batch_env.reward[0])
self._memory = memory.EpisodeMemory(template, config.update_every, config.max_length, 'memory')
self._memory_index = tf.Variable(0, False)
use_gpu = self._config.use_gpu and utility.available_gpus()
with tf.device('/gpu:0' if use_gpu else '/cpu:0'):
# Create network variables for later calls to reuse.
action_size = self._batch_env.action.shape[1].value
self._network = tf.make_template(
'network', functools.partial(config.network, config, action_size))
self._network = tf.make_template('network',
functools.partial(config.network, config, action_size))
output = self._network(
tf.zeros_like(self._batch_env.observ)[:, None],
tf.ones(len(self._batch_env)))
tf.zeros_like(self._batch_env.observ)[:, None], tf.ones(len(self._batch_env)))
with tf.variable_scope('ppo_temporary'):
self._episodes = memory.EpisodeMemory(
template, len(batch_env), config.max_length, 'episodes')
self._episodes = memory.EpisodeMemory(template, len(batch_env), config.max_length,
'episodes')
if output.state is None:
self._last_state = None
else:
# Ensure the batch dimension is set.
tf.contrib.framework.nest.map_structure(
lambda x: x.set_shape([len(batch_env)] + x.shape.as_list()[1:]),
output.state)
lambda x: x.set_shape([len(batch_env)] + x.shape.as_list()[1:]), output.state)
# pylint: disable=undefined-variable
self._last_state = tf.contrib.framework.nest.map_structure(
lambda x: tf.Variable(lambda: tf.zeros_like(x), False),
output.state)
self._last_action = tf.Variable(
tf.zeros_like(self._batch_env.action), False, name='last_action')
self._last_mean = tf.Variable(
tf.zeros_like(self._batch_env.action), False, name='last_mean')
self._last_logstd = tf.Variable(
tf.zeros_like(self._batch_env.action), False, name='last_logstd')
self._penalty = tf.Variable(
self._config.kl_init_penalty, False, dtype=tf.float32)
lambda x: tf.Variable(lambda: tf.zeros_like(x), False), output.state)
self._last_action = tf.Variable(tf.zeros_like(self._batch_env.action),
False,
name='last_action')
self._last_mean = tf.Variable(tf.zeros_like(self._batch_env.action),
False,
name='last_mean')
self._last_logstd = tf.Variable(tf.zeros_like(self._batch_env.action),
False,
name='last_logstd')
self._penalty = tf.Variable(self._config.kl_init_penalty, False, dtype=tf.float32)
self._optimizer = self._config.optimizer(self._config.learning_rate)
def begin_episode(self, agent_indices):
@@ -109,8 +108,7 @@ class PPOAlgorithm(object):
if self._last_state is None:
reset_state = tf.no_op()
else:
reset_state = utility.reinit_nested_vars(
self._last_state, agent_indices)
reset_state = utility.reinit_nested_vars(self._last_state, agent_indices)
reset_buffer = self._episodes.clear(agent_indices)
with tf.control_dependencies([reset_state, reset_buffer]):
return tf.constant('')
@@ -130,36 +128,33 @@ class PPOAlgorithm(object):
if self._last_state is None:
state = None
else:
state = tf.contrib.framework.nest.map_structure(
lambda x: tf.gather(x, agent_indices), self._last_state)
state = tf.contrib.framework.nest.map_structure(lambda x: tf.gather(x, agent_indices),
self._last_state)
output = self._network(observ[:, None], tf.ones(observ.shape[0]), state)
action = tf.cond(
self._is_training, output.policy.sample, lambda: output.mean)
action = tf.cond(self._is_training, output.policy.sample, lambda: output.mean)
logprob = output.policy.log_prob(action)[:, 0]
# pylint: disable=g-long-lambda
summary = tf.cond(self._should_log, lambda: tf.summary.merge([
tf.summary.histogram('mean', output.mean[:, 0]),
tf.summary.histogram('std', tf.exp(output.logstd[:, 0])),
tf.summary.histogram('action', action[:, 0]),
tf.summary.histogram('logprob', logprob)]), str)
summary = tf.cond(
self._should_log, lambda: tf.summary.merge([
tf.summary.histogram('mean', output.mean[:, 0]),
tf.summary.histogram('std', tf.exp(output.logstd[:, 0])),
tf.summary.histogram('action', action[:, 0]),
tf.summary.histogram('logprob', logprob)
]), str)
# Remember current policy to append to memory in the experience callback.
if self._last_state is None:
assign_state = tf.no_op()
else:
assign_state = utility.assign_nested_vars(
self._last_state, output.state, agent_indices)
assign_state = utility.assign_nested_vars(self._last_state, output.state, agent_indices)
with tf.control_dependencies([
assign_state,
tf.scatter_update(
self._last_action, agent_indices, action[:, 0]),
tf.scatter_update(
self._last_mean, agent_indices, output.mean[:, 0]),
tf.scatter_update(
self._last_logstd, agent_indices, output.logstd[:, 0])]):
tf.scatter_update(self._last_action, agent_indices, action[:, 0]),
tf.scatter_update(self._last_mean, agent_indices, output.mean[:, 0]),
tf.scatter_update(self._last_logstd, agent_indices, output.logstd[:, 0])
]):
return tf.check_numerics(action[:, 0], 'action'), tf.identity(summary)
def experience(
self, agent_indices, observ, action, reward, unused_done, unused_nextob):
def experience(self, agent_indices, observ, action, reward, unused_done, unused_nextob):
"""Process the transition tuple of the current step.
When training, add the current transition tuple to the memory and update
@@ -181,34 +176,36 @@ class PPOAlgorithm(object):
return tf.cond(
self._is_training,
# pylint: disable=g-long-lambda
lambda: self._define_experience(
agent_indices, observ, action, reward), str)
lambda: self._define_experience(agent_indices, observ, action, reward),
str)
def _define_experience(self, agent_indices, observ, action, reward):
"""Implement the branch of experience() entered during training."""
update_filters = tf.summary.merge([
self._observ_filter.update(observ),
self._reward_filter.update(reward)])
update_filters = tf.summary.merge(
[self._observ_filter.update(observ),
self._reward_filter.update(reward)])
with tf.control_dependencies([update_filters]):
if self._config.train_on_agent_action:
# NOTE: Doesn't seem to change much.
action = self._last_action
batch = (
observ, action, tf.gather(self._last_mean, agent_indices),
tf.gather(self._last_logstd, agent_indices), reward)
batch = (observ, action, tf.gather(self._last_mean,
agent_indices), tf.gather(self._last_logstd,
agent_indices), reward)
append = self._episodes.append(batch, agent_indices)
with tf.control_dependencies([append]):
norm_observ = self._observ_filter.transform(observ)
norm_reward = tf.reduce_mean(self._reward_filter.transform(reward))
# pylint: disable=g-long-lambda
summary = tf.cond(self._should_log, lambda: tf.summary.merge([
update_filters,
self._observ_filter.summary(),
self._reward_filter.summary(),
tf.summary.scalar('memory_size', self._memory_index),
tf.summary.histogram('normalized_observ', norm_observ),
tf.summary.histogram('action', self._last_action),
tf.summary.scalar('normalized_reward', norm_reward)]), str)
summary = tf.cond(
self._should_log, lambda: tf.summary.merge([
update_filters,
self._observ_filter.summary(),
self._reward_filter.summary(),
tf.summary.scalar('memory_size', self._memory_index),
tf.summary.histogram('normalized_observ', norm_observ),
tf.summary.histogram('action', self._last_action),
tf.summary.scalar('normalized_reward', norm_reward)
]), str)
return summary
def end_episode(self, agent_indices):
@@ -226,20 +223,16 @@ class PPOAlgorithm(object):
Summary tensor.
"""
with tf.name_scope('end_episode/'):
return tf.cond(
self._is_training,
lambda: self._define_end_episode(agent_indices), str)
return tf.cond(self._is_training, lambda: self._define_end_episode(agent_indices), str)
def _define_end_episode(self, agent_indices):
"""Implement the branch of end_episode() entered during training."""
episodes, length = self._episodes.data(agent_indices)
space_left = self._config.update_every - self._memory_index
use_episodes = tf.range(tf.minimum(
tf.shape(agent_indices)[0], space_left))
use_episodes = tf.range(tf.minimum(tf.shape(agent_indices)[0], space_left))
episodes = [tf.gather(elem, use_episodes) for elem in episodes]
append = self._memory.replace(
episodes, tf.gather(length, use_episodes),
use_episodes + self._memory_index)
append = self._memory.replace(episodes, tf.gather(length, use_episodes),
use_episodes + self._memory_index)
with tf.control_dependencies([append]):
inc_index = self._memory_index.assign_add(tf.shape(use_episodes)[0])
with tf.control_dependencies([inc_index]):
@@ -256,8 +249,7 @@ class PPOAlgorithm(object):
Summary tensor.
"""
with tf.name_scope('training'):
assert_full = tf.assert_equal(
self._memory_index, self._config.update_every)
assert_full = tf.assert_equal(self._memory_index, self._config.update_every)
with tf.control_dependencies([assert_full]):
data = self._memory.data()
(observ, action, old_mean, old_logstd, reward), length = data
@@ -265,22 +257,18 @@ class PPOAlgorithm(object):
length = tf.identity(length)
observ = self._observ_filter.transform(observ)
reward = self._reward_filter.transform(reward)
update_summary = self._perform_update_steps(
observ, action, old_mean, old_logstd, reward, length)
update_summary = self._perform_update_steps(observ, action, old_mean, old_logstd, reward,
length)
with tf.control_dependencies([update_summary]):
penalty_summary = self._adjust_penalty(
observ, old_mean, old_logstd, length)
penalty_summary = self._adjust_penalty(observ, old_mean, old_logstd, length)
with tf.control_dependencies([penalty_summary]):
clear_memory = tf.group(
self._memory.clear(), self._memory_index.assign(0))
clear_memory = tf.group(self._memory.clear(), self._memory_index.assign(0))
with tf.control_dependencies([clear_memory]):
weight_summary = utility.variable_summaries(
tf.trainable_variables(), self._config.weight_summaries)
return tf.summary.merge([
update_summary, penalty_summary, weight_summary])
weight_summary = utility.variable_summaries(tf.trainable_variables(),
self._config.weight_summaries)
return tf.summary.merge([update_summary, penalty_summary, weight_summary])
def _perform_update_steps(
self, observ, action, old_mean, old_logstd, reward, length):
def _perform_update_steps(self, observ, action, old_mean, old_logstd, reward, length):
"""Perform multiple update steps of value function and policy.
The advantage is computed once at the beginning and shared across
@@ -298,37 +286,29 @@ class PPOAlgorithm(object):
Returns:
Summary tensor.
"""
return_ = utility.discounted_return(
reward, length, self._config.discount)
return_ = utility.discounted_return(reward, length, self._config.discount)
value = self._network(observ, length).value
if self._config.gae_lambda:
advantage = utility.lambda_return(
reward, value, length, self._config.discount,
self._config.gae_lambda)
advantage = utility.lambda_return(reward, value, length, self._config.discount,
self._config.gae_lambda)
else:
advantage = return_ - value
mean, variance = tf.nn.moments(advantage, axes=[0, 1], keep_dims=True)
advantage = (advantage - mean) / (tf.sqrt(variance) + 1e-8)
advantage = tf.Print(
advantage, [tf.reduce_mean(return_), tf.reduce_mean(value)],
'return and value: ')
advantage = tf.Print(
advantage, [tf.reduce_mean(advantage)],
'normalized advantage: ')
advantage = tf.Print(advantage,
[tf.reduce_mean(return_), tf.reduce_mean(value)], 'return and value: ')
advantage = tf.Print(advantage, [tf.reduce_mean(advantage)], 'normalized advantage: ')
# pylint: disable=g-long-lambda
value_loss, policy_loss, summary = tf.scan(
lambda _1, _2: self._update_step(
observ, action, old_mean, old_logstd, reward, advantage, length),
tf.range(self._config.update_epochs),
[0., 0., ''], parallel_iterations=1)
print_losses = tf.group(
tf.Print(0, [tf.reduce_mean(value_loss)], 'value loss: '),
tf.Print(0, [tf.reduce_mean(policy_loss)], 'policy loss: '))
value_loss, policy_loss, summary = tf.scan(lambda _1, _2: self._update_step(
observ, action, old_mean, old_logstd, reward, advantage, length),
tf.range(self._config.update_epochs), [0., 0., ''],
parallel_iterations=1)
print_losses = tf.group(tf.Print(0, [tf.reduce_mean(value_loss)], 'value loss: '),
tf.Print(0, [tf.reduce_mean(policy_loss)], 'policy loss: '))
with tf.control_dependencies([value_loss, policy_loss, print_losses]):
return summary[self._config.update_epochs // 2]
def _update_step(
self, observ, action, old_mean, old_logstd, reward, advantage, length):
def _update_step(self, observ, action, old_mean, old_logstd, reward, advantage, length):
"""Compute the current combined loss and perform a gradient update step.
Args:
@@ -345,27 +325,20 @@ class PPOAlgorithm(object):
"""
value_loss, value_summary = self._value_loss(observ, reward, length)
network = self._network(observ, length)
policy_loss, policy_summary = self._policy_loss(
network.mean, network.logstd, old_mean, old_logstd, action,
advantage, length)
value_gradients, value_variables = (
zip(*self._optimizer.compute_gradients(value_loss)))
policy_gradients, policy_variables = (
zip(*self._optimizer.compute_gradients(policy_loss)))
policy_loss, policy_summary = self._policy_loss(network.mean, network.logstd, old_mean,
old_logstd, action, advantage, length)
value_gradients, value_variables = (zip(*self._optimizer.compute_gradients(value_loss)))
policy_gradients, policy_variables = (zip(*self._optimizer.compute_gradients(policy_loss)))
all_gradients = value_gradients + policy_gradients
all_variables = value_variables + policy_variables
optimize = self._optimizer.apply_gradients(
zip(all_gradients, all_variables))
optimize = self._optimizer.apply_gradients(zip(all_gradients, all_variables))
summary = tf.summary.merge([
value_summary, policy_summary,
tf.summary.scalar(
'value_gradient_norm', tf.global_norm(value_gradients)),
tf.summary.scalar(
'policy_gradient_norm', tf.global_norm(policy_gradients)),
utility.gradient_summaries(
zip(value_gradients, value_variables), dict(value=r'.*')),
utility.gradient_summaries(
zip(policy_gradients, policy_variables), dict(policy=r'.*'))])
tf.summary.scalar('value_gradient_norm', tf.global_norm(value_gradients)),
tf.summary.scalar('policy_gradient_norm', tf.global_norm(policy_gradients)),
utility.gradient_summaries(zip(value_gradients, value_variables), dict(value=r'.*')),
utility.gradient_summaries(zip(policy_gradients, policy_variables), dict(policy=r'.*'))
])
with tf.control_dependencies([optimize]):
return [tf.identity(x) for x in (value_loss, policy_loss, summary)]
@@ -385,18 +358,17 @@ class PPOAlgorithm(object):
"""
with tf.name_scope('value_loss'):
value = self._network(observ, length).value
return_ = utility.discounted_return(
reward, length, self._config.discount)
return_ = utility.discounted_return(reward, length, self._config.discount)
advantage = return_ - value
value_loss = 0.5 * self._mask(advantage ** 2, length)
value_loss = 0.5 * self._mask(advantage**2, length)
summary = tf.summary.merge([
tf.summary.histogram('value_loss', value_loss),
tf.summary.scalar('avg_value_loss', tf.reduce_mean(value_loss))])
tf.summary.scalar('avg_value_loss', tf.reduce_mean(value_loss))
])
value_loss = tf.reduce_mean(value_loss)
return tf.check_numerics(value_loss, 'value_loss'), summary
def _policy_loss(
self, mean, logstd, old_mean, old_logstd, action, advantage, length):
def _policy_loss(self, mean, logstd, old_mean, old_logstd, action, advantage, length):
"""Compute the policy loss composed of multiple components.
1. The policy gradient loss is importance sampled from the data-collecting
@@ -420,24 +392,20 @@ class PPOAlgorithm(object):
"""
with tf.name_scope('policy_loss'):
entropy = utility.diag_normal_entropy(mean, logstd)
kl = tf.reduce_mean(self._mask(utility.diag_normal_kl(
old_mean, old_logstd, mean, logstd), length), 1)
kl = tf.reduce_mean(
self._mask(utility.diag_normal_kl(old_mean, old_logstd, mean, logstd), length), 1)
policy_gradient = tf.exp(
utility.diag_normal_logpdf(mean, logstd, action) -
utility.diag_normal_logpdf(old_mean, old_logstd, action))
surrogate_loss = -tf.reduce_mean(self._mask(
policy_gradient * tf.stop_gradient(advantage), length), 1)
surrogate_loss = -tf.reduce_mean(
self._mask(policy_gradient * tf.stop_gradient(advantage), length), 1)
kl_penalty = self._penalty * kl
cutoff_threshold = self._config.kl_target * self._config.kl_cutoff_factor
cutoff_count = tf.reduce_sum(
tf.cast(kl > cutoff_threshold, tf.int32))
with tf.control_dependencies([tf.cond(
cutoff_count > 0,
lambda: tf.Print(0, [cutoff_count], 'kl cutoff! '), int)]):
kl_cutoff = (
self._config.kl_cutoff_coef *
tf.cast(kl > cutoff_threshold, tf.float32) *
(kl - cutoff_threshold) ** 2)
cutoff_count = tf.reduce_sum(tf.cast(kl > cutoff_threshold, tf.int32))
with tf.control_dependencies(
[tf.cond(cutoff_count > 0, lambda: tf.Print(0, [cutoff_count], 'kl cutoff! '), int)]):
kl_cutoff = (self._config.kl_cutoff_coef * tf.cast(kl > cutoff_threshold, tf.float32) *
(kl - cutoff_threshold)**2)
policy_loss = surrogate_loss + kl_penalty + kl_cutoff
summary = tf.summary.merge([
tf.summary.histogram('entropy', entropy),
@@ -449,7 +417,8 @@ class PPOAlgorithm(object):
tf.summary.histogram('policy_loss', policy_loss),
tf.summary.scalar('avg_surr_loss', tf.reduce_mean(surrogate_loss)),
tf.summary.scalar('avg_kl_penalty', tf.reduce_mean(kl_penalty)),
tf.summary.scalar('avg_policy_loss', tf.reduce_mean(policy_loss))])
tf.summary.scalar('avg_policy_loss', tf.reduce_mean(policy_loss))
])
policy_loss = tf.reduce_mean(policy_loss, 0)
return tf.check_numerics(policy_loss, 'policy_loss'), summary
@@ -471,30 +440,30 @@ class PPOAlgorithm(object):
"""
with tf.name_scope('adjust_penalty'):
network = self._network(observ, length)
assert_change = tf.assert_equal(
tf.reduce_all(tf.equal(network.mean, old_mean)), False,
message='policy should change')
assert_change = tf.assert_equal(tf.reduce_all(tf.equal(network.mean, old_mean)),
False,
message='policy should change')
print_penalty = tf.Print(0, [self._penalty], 'current penalty: ')
with tf.control_dependencies([assert_change, print_penalty]):
kl_change = tf.reduce_mean(self._mask(utility.diag_normal_kl(
old_mean, old_logstd, network.mean, network.logstd), length))
kl_change = tf.reduce_mean(
self._mask(utility.diag_normal_kl(old_mean, old_logstd, network.mean, network.logstd),
length))
kl_change = tf.Print(kl_change, [kl_change], 'kl change: ')
maybe_increase = tf.cond(
kl_change > 1.3 * self._config.kl_target,
# pylint: disable=g-long-lambda
lambda: tf.Print(self._penalty.assign(
self._penalty * 1.5), [0], 'increase penalty '),
lambda: tf.Print(self._penalty.assign(self._penalty * 1.5), [0], 'increase penalty '),
float)
maybe_decrease = tf.cond(
kl_change < 0.7 * self._config.kl_target,
# pylint: disable=g-long-lambda
lambda: tf.Print(self._penalty.assign(
self._penalty / 1.5), [0], 'decrease penalty '),
lambda: tf.Print(self._penalty.assign(self._penalty / 1.5), [0], 'decrease penalty '),
float)
with tf.control_dependencies([maybe_increase, maybe_decrease]):
return tf.summary.merge([
tf.summary.scalar('kl_change', kl_change),
tf.summary.scalar('penalty', self._penalty)])
tf.summary.scalar('penalty', self._penalty)
])
def _mask(self, tensor, length):
"""Set padding elements of a batch of sequences to zero.

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Memory that stores episodes."""
from __future__ import absolute_import
@@ -43,10 +42,9 @@ class EpisodeMemory(object):
self._scope = var_scope
self._length = tf.Variable(tf.zeros(capacity, tf.int32), False)
self._buffers = [
tf.Variable(tf.zeros(
[capacity, max_length] + elem.shape.as_list(),
elem.dtype), False)
for elem in template]
tf.Variable(tf.zeros([capacity, max_length] + elem.shape.as_list(), elem.dtype), False)
for elem in template
]
def length(self, rows=None):
"""Tensor holding the current length of episodes.
@@ -72,13 +70,11 @@ class EpisodeMemory(object):
"""
rows = tf.range(self._capacity) if rows is None else rows
assert rows.shape.ndims == 1
assert_capacity = tf.assert_less(
rows, self._capacity,
message='capacity exceeded')
assert_capacity = tf.assert_less(rows, self._capacity, message='capacity exceeded')
with tf.control_dependencies([assert_capacity]):
assert_max_length = tf.assert_less(
tf.gather(self._length, rows), self._max_length,
message='max length exceeded')
assert_max_length = tf.assert_less(tf.gather(self._length, rows),
self._max_length,
message='max length exceeded')
append_ops = []
with tf.control_dependencies([assert_max_length]):
for buffer_, elements in zip(self._buffers, transitions):
@@ -86,8 +82,7 @@ class EpisodeMemory(object):
indices = tf.stack([rows, timestep], 1)
append_ops.append(tf.scatter_nd_update(buffer_, indices, elements))
with tf.control_dependencies(append_ops):
episode_mask = tf.reduce_sum(tf.one_hot(
rows, self._capacity, dtype=tf.int32), 0)
episode_mask = tf.reduce_sum(tf.one_hot(rows, self._capacity, dtype=tf.int32), 0)
return self._length.assign_add(episode_mask)
def replace(self, episodes, length, rows=None):
@@ -103,11 +98,11 @@ class EpisodeMemory(object):
"""
rows = tf.range(self._capacity) if rows is None else rows
assert rows.shape.ndims == 1
assert_capacity = tf.assert_less(
rows, self._capacity, message='capacity exceeded')
assert_capacity = tf.assert_less(rows, self._capacity, message='capacity exceeded')
with tf.control_dependencies([assert_capacity]):
assert_max_length = tf.assert_less_equal(
length, self._max_length, message='max length exceeded')
assert_max_length = tf.assert_less_equal(length,
self._max_length,
message='max length exceeded')
replace_ops = []
with tf.control_dependencies([assert_max_length]):
for buffer_, elements in zip(self._buffers, episodes):

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Normalize tensors based on streaming estimates of mean and variance."""
from __future__ import absolute_import
@@ -24,8 +23,7 @@ import tensorflow as tf
class StreamingNormalize(object):
"""Normalize tensors based on streaming estimates of mean and variance."""
def __init__(
self, template, center=True, scale=True, clip=10, name='normalize'):
def __init__(self, template, center=True, scale=True, clip=10, name='normalize'):
"""Normalize tensors based on streaming estimates of mean and variance.
Centering the value, scaling it by the standard deviation, and clipping
@@ -69,8 +67,7 @@ class StreamingNormalize(object):
if self._scale:
# We cannot scale before seeing at least two samples.
value /= tf.cond(
self._count > 1, lambda: self._std() + 1e-8,
lambda: tf.ones_like(self._var_sum))[None]
self._count > 1, lambda: self._std() + 1e-8, lambda: tf.ones_like(self._var_sum))[None]
if self._clip:
value = tf.clip_by_value(value, -self._clip, self._clip)
# Remove batch dimension if necessary.
@@ -97,8 +94,7 @@ class StreamingNormalize(object):
mean_delta = tf.reduce_sum(value - self._mean[None, ...], 0)
new_mean = self._mean + mean_delta / step
new_mean = tf.cond(self._count > 1, lambda: new_mean, lambda: value[0])
var_delta = (
value - self._mean[None, ...]) * (value - new_mean[None, ...])
var_delta = (value - self._mean[None, ...]) * (value - new_mean[None, ...])
new_var_sum = self._var_sum + tf.reduce_sum(var_delta, 0)
with tf.control_dependencies([new_mean, new_var_sum]):
update = self._mean.assign(new_mean), self._var_sum.assign(new_var_sum)
@@ -116,10 +112,8 @@ class StreamingNormalize(object):
Operation.
"""
with tf.name_scope(self._name + '/reset'):
return tf.group(
self._count.assign(0),
self._mean.assign(tf.zeros_like(self._mean)),
self._var_sum.assign(tf.zeros_like(self._var_sum)))
return tf.group(self._count.assign(0), self._mean.assign(tf.zeros_like(self._mean)),
self._var_sum.assign(tf.zeros_like(self._var_sum)))
def summary(self):
"""Summary string of mean and standard deviation.
@@ -128,10 +122,8 @@ class StreamingNormalize(object):
Summary tensor.
"""
with tf.name_scope(self._name + '/summary'):
mean_summary = tf.cond(
self._count > 0, lambda: self._summary('mean', self._mean), str)
std_summary = tf.cond(
self._count > 1, lambda: self._summary('stddev', self._std()), str)
mean_summary = tf.cond(self._count > 0, lambda: self._summary('mean', self._mean), str)
std_summary = tf.cond(self._count > 1, lambda: self._summary('stddev', self._std()), str)
return tf.summary.merge([mean_summary, std_summary])
def _std(self):
@@ -143,10 +135,8 @@ class StreamingNormalize(object):
Returns:
Tensor of current variance.
"""
variance = tf.cond(
self._count > 1,
lambda: self._var_sum / tf.cast(self._count - 1, tf.float32),
lambda: tf.ones_like(self._var_sum) * float('nan'))
variance = tf.cond(self._count > 1, lambda: self._var_sum / tf.cast(
self._count - 1, tf.float32), lambda: tf.ones_like(self._var_sum) * float('nan'))
# The epsilon corrects for small negative variance values caused by
# the algorithm. It was empirically chosen to work with all environments
# tested.

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for the PPO algorithm."""
from __future__ import absolute_import
@@ -37,8 +36,7 @@ def reinit_nested_vars(variables, indices=None):
Operation.
"""
if isinstance(variables, (tuple, list)):
return tf.group(*[
reinit_nested_vars(variable, indices) for variable in variables])
return tf.group(*[reinit_nested_vars(variable, indices) for variable in variables])
if indices is None:
return variables.assign(tf.zeros_like(variables))
else:
@@ -58,9 +56,8 @@ def assign_nested_vars(variables, tensors, indices=None):
Operation.
"""
if isinstance(variables, (tuple, list)):
return tf.group(*[
assign_nested_vars(variable, tensor)
for variable, tensor in zip(variables, tensors)])
return tf.group(
*[assign_nested_vars(variable, tensor) for variable, tensor in zip(variables, tensors)])
if indices is None:
return variables.assign(tensors)
else:
@@ -71,10 +68,11 @@ def discounted_return(reward, length, discount):
"""Discounted Monte-Carlo returns."""
timestep = tf.range(reward.shape[1].value)
mask = tf.cast(timestep[None, :] < length[:, None], tf.float32)
return_ = tf.reverse(tf.transpose(tf.scan(
lambda agg, cur: cur + discount * agg,
tf.transpose(tf.reverse(mask * reward, [1]), [1, 0]),
tf.zeros_like(reward[:, -1]), 1, False), [1, 0]), [1])
return_ = tf.reverse(
tf.transpose(
tf.scan(lambda agg, cur: cur + discount * agg,
tf.transpose(tf.reverse(mask * reward, [1]), [1, 0]),
tf.zeros_like(reward[:, -1]), 1, False), [1, 0]), [1])
return tf.check_numerics(tf.stop_gradient(return_), 'return')
@@ -85,9 +83,8 @@ def fixed_step_return(reward, value, length, discount, window):
return_ = tf.zeros_like(reward)
for _ in range(window):
return_ += reward
reward = discount * tf.concat(
[reward[:, 1:], tf.zeros_like(reward[:, -1:])], 1)
return_ += discount ** window * tf.concat(
reward = discount * tf.concat([reward[:, 1:], tf.zeros_like(reward[:, -1:])], 1)
return_ += discount**window * tf.concat(
[value[:, window:], tf.zeros_like(value[:, -window:]), 1])
return tf.check_numerics(tf.stop_gradient(mask * return_), 'return')
@@ -99,10 +96,11 @@ def lambda_return(reward, value, length, discount, lambda_):
sequence = mask * reward + discount * value * (1 - lambda_)
discount = mask * discount * lambda_
sequence = tf.stack([sequence, discount], 2)
return_ = tf.reverse(tf.transpose(tf.scan(
lambda agg, cur: cur[0] + cur[1] * agg,
tf.transpose(tf.reverse(sequence, [1]), [1, 2, 0]),
tf.zeros_like(value[:, -1]), 1, False), [1, 0]), [1])
return_ = tf.reverse(
tf.transpose(
tf.scan(lambda agg, cur: cur[0] + cur[1] * agg,
tf.transpose(tf.reverse(sequence, [1]), [1, 2, 0]), tf.zeros_like(value[:, -1]),
1, False), [1, 0]), [1])
return tf.check_numerics(tf.stop_gradient(return_), 'return')
@@ -112,27 +110,26 @@ def lambda_advantage(reward, value, length, discount):
mask = tf.cast(timestep[None, :] < length[:, None], tf.float32)
next_value = tf.concat([value[:, 1:], tf.zeros_like(value[:, -1:])], 1)
delta = reward + discount * next_value - value
advantage = tf.reverse(tf.transpose(tf.scan(
lambda agg, cur: cur + discount * agg,
tf.transpose(tf.reverse(mask * delta, [1]), [1, 0]),
tf.zeros_like(delta[:, -1]), 1, False), [1, 0]), [1])
advantage = tf.reverse(
tf.transpose(
tf.scan(lambda agg, cur: cur + discount * agg,
tf.transpose(tf.reverse(mask * delta, [1]), [1, 0]), tf.zeros_like(delta[:, -1]),
1, False), [1, 0]), [1])
return tf.check_numerics(tf.stop_gradient(advantage), 'advantage')
def diag_normal_kl(mean0, logstd0, mean1, logstd1):
"""Epirical KL divergence of two normals with diagonal covariance."""
logstd0_2, logstd1_2 = 2 * logstd0, 2 * logstd1
return 0.5 * (
tf.reduce_sum(tf.exp(logstd0_2 - logstd1_2), -1) +
tf.reduce_sum((mean1 - mean0) ** 2 / tf.exp(logstd1_2), -1) +
tf.reduce_sum(logstd1_2, -1) - tf.reduce_sum(logstd0_2, -1) -
mean0.shape[-1].value)
return 0.5 * (tf.reduce_sum(tf.exp(logstd0_2 - logstd1_2), -1) + tf.reduce_sum(
(mean1 - mean0)**2 / tf.exp(logstd1_2), -1) + tf.reduce_sum(logstd1_2, -1) -
tf.reduce_sum(logstd0_2, -1) - mean0.shape[-1].value)
def diag_normal_logpdf(mean, logstd, loc):
"""Log density of a normal with diagonal covariance."""
constant = -0.5 * math.log(2 * math.pi) - logstd
value = -0.5 * ((loc - mean) / tf.exp(logstd)) ** 2
value = -0.5 * ((loc - mean) / tf.exp(logstd))**2
return tf.reduce_sum(constant + value, -1)

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tools for reinforcement learning."""
from __future__ import absolute_import

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Wrap a dictionary to access keys as attributes."""
from __future__ import absolute_import

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Combine multiple environments to step them in batch."""
from __future__ import absolute_import
@@ -83,13 +82,9 @@ class BatchEnv(object):
message = 'Invalid action at index {}: {}'
raise ValueError(message.format(index, action))
if self._blocking:
transitions = [
env.step(action)
for env, action in zip(self._envs, actions)]
transitions = [env.step(action) for env, action in zip(self._envs, actions)]
else:
transitions = [
env.step(action, blocking=False)
for env, action in zip(self._envs, actions)]
transitions = [env.step(action, blocking=False) for env, action in zip(self._envs, actions)]
transitions = [transition() for transition in transitions]
observs, rewards, dones, infos = zip(*transitions)
observ = np.stack(observs)

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Count learnable parameters."""
from __future__ import absolute_import

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Batch of environments inside the TensorFlow graph."""
from __future__ import absolute_import
@@ -42,18 +41,18 @@ class InGraphBatchEnv(object):
action_shape = self._parse_shape(self._batch_env.action_space)
action_dtype = self._parse_dtype(self._batch_env.action_space)
with tf.variable_scope('env_temporary'):
self._observ = tf.Variable(
tf.zeros((len(self._batch_env),) + observ_shape, observ_dtype),
name='observ', trainable=False)
self._action = tf.Variable(
tf.zeros((len(self._batch_env),) + action_shape, action_dtype),
name='action', trainable=False)
self._reward = tf.Variable(
tf.zeros((len(self._batch_env),), tf.float32),
name='reward', trainable=False)
self._done = tf.Variable(
tf.cast(tf.ones((len(self._batch_env),)), tf.bool),
name='done', trainable=False)
self._observ = tf.Variable(tf.zeros((len(self._batch_env),) + observ_shape, observ_dtype),
name='observ',
trainable=False)
self._action = tf.Variable(tf.zeros((len(self._batch_env),) + action_shape, action_dtype),
name='action',
trainable=False)
self._reward = tf.Variable(tf.zeros((len(self._batch_env),), tf.float32),
name='reward',
trainable=False)
self._done = tf.Variable(tf.cast(tf.ones((len(self._batch_env),)), tf.bool),
name='done',
trainable=False)
def __getattr__(self, name):
"""Forward unimplemented attributes to one of the original environments.
@@ -89,16 +88,13 @@ class InGraphBatchEnv(object):
if action.dtype in (tf.float16, tf.float32, tf.float64):
action = tf.check_numerics(action, 'action')
observ_dtype = self._parse_dtype(self._batch_env.observation_space)
observ, reward, done = tf.py_func(
lambda a: self._batch_env.step(a)[:3], [action],
[observ_dtype, tf.float32, tf.bool], name='step')
observ, reward, done = tf.py_func(lambda a: self._batch_env.step(a)[:3], [action],
[observ_dtype, tf.float32, tf.bool],
name='step')
observ = tf.check_numerics(observ, 'observ')
reward = tf.check_numerics(reward, 'reward')
return tf.group(
self._observ.assign(observ),
self._action.assign(action),
self._reward.assign(reward),
self._done.assign(done))
return tf.group(self._observ.assign(observ), self._action.assign(action),
self._reward.assign(reward), self._done.assign(done))
def reset(self, indices=None):
"""Reset the batch of environments.
@@ -112,15 +108,15 @@ class InGraphBatchEnv(object):
if indices is None:
indices = tf.range(len(self._batch_env))
observ_dtype = self._parse_dtype(self._batch_env.observation_space)
observ = tf.py_func(
self._batch_env.reset, [indices], observ_dtype, name='reset')
observ = tf.py_func(self._batch_env.reset, [indices], observ_dtype, name='reset')
observ = tf.check_numerics(observ, 'observ')
reward = tf.zeros_like(indices, tf.float32)
done = tf.zeros_like(indices, tf.bool)
with tf.control_dependencies([
tf.scatter_update(self._observ, indices, observ),
tf.scatter_update(self._reward, indices, reward),
tf.scatter_update(self._done, indices, done)]):
tf.scatter_update(self._done, indices, done)
]):
return tf.identity(observ)
@property

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Put an OpenAI Gym environment into the TensorFlow graph."""
from __future__ import absolute_import
@@ -42,16 +41,15 @@ class InGraphEnv(object):
action_shape = self._parse_shape(self._env.action_space)
action_dtype = self._parse_dtype(self._env.action_space)
with tf.name_scope('environment'):
self._observ = tf.Variable(
tf.zeros(observ_shape, observ_dtype), name='observ', trainable=False)
self._action = tf.Variable(
tf.zeros(action_shape, action_dtype), name='action', trainable=False)
self._reward = tf.Variable(
0.0, dtype=tf.float32, name='reward', trainable=False)
self._done = tf.Variable(
True, dtype=tf.bool, name='done', trainable=False)
self._step = tf.Variable(
0, dtype=tf.int32, name='step', trainable=False)
self._observ = tf.Variable(tf.zeros(observ_shape, observ_dtype),
name='observ',
trainable=False)
self._action = tf.Variable(tf.zeros(action_shape, action_dtype),
name='action',
trainable=False)
self._reward = tf.Variable(0.0, dtype=tf.float32, name='reward', trainable=False)
self._done = tf.Variable(True, dtype=tf.bool, name='done', trainable=False)
self._step = tf.Variable(0, dtype=tf.int32, name='step', trainable=False)
def __getattr__(self, name):
"""Forward unimplemented attributes to the original environment.
@@ -79,17 +77,14 @@ class InGraphEnv(object):
if action.dtype in (tf.float16, tf.float32, tf.float64):
action = tf.check_numerics(action, 'action')
observ_dtype = self._parse_dtype(self._env.observation_space)
observ, reward, done = tf.py_func(
lambda a: self._env.step(a)[:3], [action],
[observ_dtype, tf.float32, tf.bool], name='step')
observ, reward, done = tf.py_func(lambda a: self._env.step(a)[:3], [action],
[observ_dtype, tf.float32, tf.bool],
name='step')
observ = tf.check_numerics(observ, 'observ')
reward = tf.check_numerics(reward, 'reward')
return tf.group(
self._observ.assign(observ),
self._action.assign(action),
self._reward.assign(reward),
self._done.assign(done),
self._step.assign_add(1))
return tf.group(self._observ.assign(observ), self._action.assign(action),
self._reward.assign(reward), self._done.assign(done),
self._step.assign_add(1))
def reset(self):
"""Reset the environment.
@@ -100,10 +95,10 @@ class InGraphEnv(object):
observ_dtype = self._parse_dtype(self._env.observation_space)
observ = tf.py_func(self._env.reset, [], observ_dtype, name='reset')
observ = tf.check_numerics(observ, 'observ')
with tf.control_dependencies([
self._observ.assign(observ),
self._reward.assign(0),
self._done.assign(False)]):
with tf.control_dependencies(
[self._observ.assign(observ),
self._reward.assign(0),
self._done.assign(False)]):
return tf.identity(observ)
@property

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Execute operations in a loop and coordinate logging and checkpoints."""
from __future__ import absolute_import
@@ -25,10 +24,8 @@ import tensorflow as tf
from . import streaming_mean
_Phase = collections.namedtuple(
'Phase',
'name, writer, op, batch, steps, feed, report_every, log_every,'
'Phase', 'name, writer, op, batch, steps, feed, report_every, log_every,'
'checkpoint_every')
@@ -56,16 +53,22 @@ class Loop(object):
reset: Tensor indicating to the model to start a new computation.
"""
self._logdir = logdir
self._step = (
tf.Variable(0, False, name='global_step') if step is None else step)
self._step = (tf.Variable(0, False, name='global_step') if step is None else step)
self._log = tf.placeholder(tf.bool) if log is None else log
self._report = tf.placeholder(tf.bool) if report is None else report
self._reset = tf.placeholder(tf.bool) if reset is None else reset
self._phases = []
def add_phase(
self, name, done, score, summary, steps,
report_every=None, log_every=None, checkpoint_every=None, feed=None):
def add_phase(self,
name,
done,
score,
summary,
steps,
report_every=None,
log_every=None,
checkpoint_every=None,
feed=None):
"""Add a phase to the loop protocol.
If the model breaks long computation into multiple steps, the done tensor
@@ -97,13 +100,12 @@ class Loop(object):
if done.shape.ndims is None or score.shape.ndims is None:
raise ValueError("Rank of 'done' and 'score' tensors must be known.")
writer = self._logdir and tf.summary.FileWriter(
os.path.join(self._logdir, name), tf.get_default_graph(),
flush_secs=60)
os.path.join(self._logdir, name), tf.get_default_graph(), flush_secs=60)
op = self._define_step(done, score, summary)
batch = 1 if score.shape.ndims == 0 else score.shape[0].value
self._phases.append(_Phase(
name, writer, op, batch, int(steps), feed, report_every,
log_every, checkpoint_every))
self._phases.append(
_Phase(name, writer, op, batch, int(steps), feed, report_every, log_every,
checkpoint_every))
def run(self, sess, saver, max_step=None):
"""Run the loop schedule for a specified number of steps.
@@ -133,13 +135,11 @@ class Loop(object):
tf.logging.info(message.format(phase.name, phase_step, global_step))
# Populate book keeping tensors.
phase.feed[self._reset] = (steps_in < steps_made)
phase.feed[self._log] = (
phase.writer and
self._is_every_steps(phase_step, phase.batch, phase.log_every))
phase.feed[self._report] = (
self._is_every_steps(phase_step, phase.batch, phase.report_every))
summary, mean_score, global_step, steps_made = sess.run(
phase.op, phase.feed)
phase.feed[self._log] = (phase.writer and
self._is_every_steps(phase_step, phase.batch, phase.log_every))
phase.feed[self._report] = (self._is_every_steps(phase_step, phase.batch,
phase.report_every))
summary, mean_score, global_step, steps_made = sess.run(phase.op, phase.feed)
if self._is_every_steps(phase_step, phase.batch, phase.checkpoint_every):
self._store_checkpoint(sess, saver, global_step)
if self._is_every_steps(phase_step, phase.batch, phase.report_every):
@@ -207,8 +207,7 @@ class Loop(object):
score_mean = streaming_mean.StreamingMean((), tf.float32)
with tf.control_dependencies([done, score, summary]):
done_score = tf.gather(score, tf.where(done)[:, 0])
submit_score = tf.cond(
tf.reduce_any(done), lambda: score_mean.submit(done_score), tf.no_op)
submit_score = tf.cond(tf.reduce_any(done), lambda: score_mean.submit(done_score), tf.no_op)
with tf.control_dependencies([submit_score]):
mean_score = tf.cond(self._report, score_mean.clear, float)
steps_made = tf.shape(score)[0]

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mock algorithm for testing reinforcement learning code."""
from __future__ import absolute_import

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mock environment for testing reinforcement learning code."""
from __future__ import absolute_import

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""In-graph simulation step of a vectorized algorithm with environments."""
from __future__ import absolute_import
@@ -55,7 +54,8 @@ def simulate(batch_env, algo, log=True, reset=False):
reset_ops = [
batch_env.reset(agent_indices),
tf.scatter_update(score, agent_indices, zero_scores),
tf.scatter_update(length, agent_indices, zero_durations)]
tf.scatter_update(length, agent_indices, zero_durations)
]
with tf.control_dependencies(reset_ops):
return algo.begin_episode(agent_indices)
@@ -78,9 +78,8 @@ def simulate(batch_env, algo, log=True, reset=False):
inc_length = length.assign_add(tf.ones(len(batch_env), tf.int32))
with tf.control_dependencies([add_score, inc_length]):
agent_indices = tf.range(len(batch_env))
experience_summary = algo.experience(
agent_indices, prevob, batch_env.action, batch_env.reward,
batch_env.done, batch_env.observ)
experience_summary = algo.experience(agent_indices, prevob, batch_env.action,
batch_env.reward, batch_env.done, batch_env.observ)
return tf.summary.merge([step_summary, experience_summary])
def _define_end_episode(agent_indices):
@@ -96,8 +95,7 @@ def simulate(batch_env, algo, log=True, reset=False):
"""
assert agent_indices.shape.ndims == 1
submit_score = mean_score.submit(tf.gather(score, agent_indices))
submit_length = mean_length.submit(
tf.cast(tf.gather(length, agent_indices), tf.float32))
submit_length = mean_length.submit(tf.cast(tf.gather(length, agent_indices), tf.float32))
with tf.control_dependencies([submit_score, submit_length]):
return algo.end_episode(agent_indices)
@@ -107,41 +105,34 @@ def simulate(batch_env, algo, log=True, reset=False):
Returns:
Summary string.
"""
score_summary = tf.cond(
tf.logical_and(log, tf.cast(mean_score.count, tf.bool)),
lambda: tf.summary.scalar('mean_score', mean_score.clear()), str)
length_summary = tf.cond(
tf.logical_and(log, tf.cast(mean_length.count, tf.bool)),
lambda: tf.summary.scalar('mean_length', mean_length.clear()), str)
score_summary = tf.cond(tf.logical_and(log, tf.cast(
mean_score.count, tf.bool)), lambda: tf.summary.scalar('mean_score', mean_score.clear()),
str)
length_summary = tf.cond(tf.logical_and(
log, tf.cast(mean_length.count,
tf.bool)), lambda: tf.summary.scalar('mean_length', mean_length.clear()), str)
return tf.summary.merge([score_summary, length_summary])
with tf.name_scope('simulate'):
log = tf.convert_to_tensor(log)
reset = tf.convert_to_tensor(reset)
with tf.variable_scope('simulate_temporary'):
score = tf.Variable(
tf.zeros(len(batch_env), dtype=tf.float32), False, name='score')
length = tf.Variable(
tf.zeros(len(batch_env), dtype=tf.int32), False, name='length')
score = tf.Variable(tf.zeros(len(batch_env), dtype=tf.float32), False, name='score')
length = tf.Variable(tf.zeros(len(batch_env), dtype=tf.int32), False, name='length')
mean_score = streaming_mean.StreamingMean((), tf.float32)
mean_length = streaming_mean.StreamingMean((), tf.float32)
agent_indices = tf.cond(
reset,
lambda: tf.range(len(batch_env)),
lambda: tf.cast(tf.where(batch_env.done)[:, 0], tf.int32))
begin_episode = tf.cond(
tf.cast(tf.shape(agent_indices)[0], tf.bool),
lambda: _define_begin_episode(agent_indices), str)
agent_indices = tf.cond(reset, lambda: tf.range(len(batch_env)), lambda: tf.cast(
tf.where(batch_env.done)[:, 0], tf.int32))
begin_episode = tf.cond(tf.cast(tf.shape(agent_indices)[0],
tf.bool), lambda: _define_begin_episode(agent_indices), str)
with tf.control_dependencies([begin_episode]):
step = _define_step()
with tf.control_dependencies([step]):
agent_indices = tf.cast(tf.where(batch_env.done)[:, 0], tf.int32)
end_episode = tf.cond(
tf.cast(tf.shape(agent_indices)[0], tf.bool),
lambda: _define_end_episode(agent_indices), str)
end_episode = tf.cond(tf.cast(tf.shape(agent_indices)[0],
tf.bool), lambda: _define_end_episode(agent_indices), str)
with tf.control_dependencies([end_episode]):
summary = tf.summary.merge([
_define_summaries(), begin_episode, step, end_episode])
summary = tf.summary.merge([_define_summaries(), begin_episode, step, end_episode])
with tf.control_dependencies([summary]):
done, score = tf.identity(batch_env.done), tf.identity(score)
return done, score, summary

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Compute a streaming estimation of the mean of submitted tensors."""
from __future__ import absolute_import
@@ -53,9 +52,8 @@ class StreamingMean(object):
# Add a batch dimension if necessary.
if value.shape.ndims == self._sum.shape.ndims:
value = value[None, ...]
return tf.group(
self._sum.assign_add(tf.reduce_sum(value, 0)),
self._count.assign_add(tf.shape(value)[0]))
return tf.group(self._sum.assign_add(tf.reduce_sum(value, 0)),
self._count.assign_add(tf.shape(value)[0]))
def clear(self):
"""Return the mean estimate and reset the streaming statistics."""

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Wrappers for OpenAI Gym environments."""
from __future__ import absolute_import
@@ -149,8 +148,7 @@ class FrameHistory(object):
return self._select_frames()
def _select_frames(self):
indices = [
(self._step - index) % self._capacity for index in self._past_indices]
indices = [(self._step - index) % self._capacity for index in self._past_indices]
observ = self._buffer[indices]
if self._flatten:
observ = np.reshape(observ, (-1,) + observ.shape[2:])
@@ -191,14 +189,14 @@ class RangeNormalize(object):
def __init__(self, env, observ=None, action=None):
self._env = env
self._should_normalize_observ = (
observ is not False and self._is_finite(self._env.observation_space))
self._should_normalize_observ = (observ is not False and
self._is_finite(self._env.observation_space))
if observ is True and not self._should_normalize_observ:
raise ValueError('Cannot normalize infinite observation range.')
if observ is None and not self._should_normalize_observ:
tf.logging.info('Not normalizing infinite observation range.')
self._should_normalize_action = (
action is not False and self._is_finite(self._env.action_space))
self._should_normalize_action = (action is not False and
self._is_finite(self._env.action_space))
if action is True and not self._should_normalize_action:
raise ValueError('Cannot normalize infinite action range.')
if action is None and not self._should_normalize_action:
@@ -323,8 +321,7 @@ class ExternalProcess(object):
action_space: The cached action space of the environment.
"""
self._conn, conn = multiprocessing.Pipe()
self._process = multiprocessing.Process(
target=self._worker, args=(constructor, conn))
self._process = multiprocessing.Process(target=self._worker, args=(constructor, conn))
atexit.register(self.close)
self._process.start()
self._observ_space = None

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Script to train a batch reinforcement learning algorithm.
Command line:
@@ -67,21 +66,25 @@ def _define_loop(graph, logdir, train_steps, eval_steps):
Returns:
Loop object.
"""
loop = tools.Loop(
logdir, graph.step, graph.should_log, graph.do_report,
graph.force_reset)
loop.add_phase(
'train', graph.done, graph.score, graph.summary, train_steps,
report_every=train_steps,
log_every=train_steps // 2,
checkpoint_every=None,
feed={graph.is_training: True})
loop.add_phase(
'eval', graph.done, graph.score, graph.summary, eval_steps,
report_every=eval_steps,
log_every=eval_steps // 2,
checkpoint_every=10 * eval_steps,
feed={graph.is_training: False})
loop = tools.Loop(logdir, graph.step, graph.should_log, graph.do_report, graph.force_reset)
loop.add_phase('train',
graph.done,
graph.score,
graph.summary,
train_steps,
report_every=train_steps,
log_every=train_steps // 2,
checkpoint_every=None,
feed={graph.is_training: True})
loop.add_phase('eval',
graph.done,
graph.score,
graph.summary,
eval_steps,
report_every=eval_steps,
log_every=eval_steps // 2,
checkpoint_every=10 * eval_steps,
feed={graph.is_training: False})
return loop
@@ -102,18 +105,13 @@ def train(config, env_processes):
if config.update_every % config.num_agents:
tf.logging.warn('Number of agents should divide episodes per update.')
with tf.device('/cpu:0'):
batch_env = utility.define_batch_env(
lambda: _create_environment(config),
config.num_agents, env_processes)
graph = utility.define_simulation_graph(
batch_env, config.algorithm, config)
loop = _define_loop(
graph, config.logdir,
config.update_every * config.max_length,
config.eval_episodes * config.max_length)
total_steps = int(
config.steps / config.update_every *
(config.update_every + config.eval_episodes))
batch_env = utility.define_batch_env(lambda: _create_environment(config), config.num_agents,
env_processes)
graph = utility.define_simulation_graph(batch_env, config.algorithm, config)
loop = _define_loop(graph, config.logdir, config.update_every * config.max_length,
config.eval_episodes * config.max_length)
total_steps = int(config.steps / config.update_every *
(config.update_every + config.eval_episodes))
# Exclude episode related variables since the Python state of environments is
# not checkpointed and thus new episodes start after resuming.
saver = utility.define_saver(exclude=(r'.*_temporary/.*',))
@@ -131,8 +129,8 @@ def main(_):
utility.set_up_logging()
if not FLAGS.config:
raise KeyError('You must specify a configuration.')
logdir = FLAGS.logdir and os.path.expanduser(os.path.join(
FLAGS.logdir, '{}-{}'.format(FLAGS.timestamp, FLAGS.config)))
logdir = FLAGS.logdir and os.path.expanduser(
os.path.join(FLAGS.logdir, '{}-{}'.format(FLAGS.timestamp, FLAGS.config)))
try:
config = utility.load_config(logdir)
except IOError:
@@ -144,16 +142,11 @@ def main(_):
if __name__ == '__main__':
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string(
'logdir', None,
'Base directory to store logs.')
tf.app.flags.DEFINE_string(
'timestamp', datetime.datetime.now().strftime('%Y%m%dT%H%M%S'),
'Sub directory to store logs.')
tf.app.flags.DEFINE_string(
'config', None,
'Configuration to execute.')
tf.app.flags.DEFINE_boolean(
'env_processes', True,
'Step environments in separate processes to circumvent the GIL.')
tf.app.flags.DEFINE_string('logdir', None, 'Base directory to store logs.')
tf.app.flags.DEFINE_string('timestamp',
datetime.datetime.now().strftime('%Y%m%dT%H%M%S'),
'Sub directory to store logs.')
tf.app.flags.DEFINE_string('config', None, 'Configuration to execute.')
tf.app.flags.DEFINE_boolean('env_processes', True,
'Step environments in separate processes to circumvent the GIL.')
tf.app.run()

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for using reinforcement learning algorithms."""
from __future__ import absolute_import
@@ -46,8 +45,7 @@ def define_simulation_graph(batch_env, algo_cls, config):
do_report = tf.placeholder(tf.bool, name='do_report')
force_reset = tf.placeholder(tf.bool, name='force_reset')
algo = algo_cls(batch_env, step, is_training, should_log, config)
done, score, summary = tools.simulate(
batch_env, algo, should_log, force_reset)
done, score, summary = tools.simulate(batch_env, algo, should_log, force_reset)
message = 'Graph contains {} trainable variables.'
tf.logging.info(message.format(tools.count_weights()))
# pylint: enable=unused-variable
@@ -67,9 +65,7 @@ def define_batch_env(constructor, num_agents, env_processes):
"""
with tf.variable_scope('environments'):
if env_processes:
envs = [
tools.wrappers.ExternalProcess(constructor)
for _ in range(num_agents)]
envs = [tools.wrappers.ExternalProcess(constructor) for _ in range(num_agents)]
else:
envs = [constructor() for _ in range(num_agents)]
batch_env = tools.BatchEnv(envs, blocking=not env_processes)
@@ -111,9 +107,7 @@ def initialize_variables(sess, saver, logdir, checkpoint=None, resume=None):
ValueError: If resume expected but no log directory specified.
RuntimeError: If no resume expected but a checkpoint was found.
"""
sess.run(tf.group(
tf.local_variables_initializer(),
tf.global_variables_initializer()))
sess.run(tf.group(tf.local_variables_initializer(), tf.global_variables_initializer()))
if resume and not (logdir or checkpoint):
raise ValueError('Need to specify logdir to resume a checkpoint.')
if logdir:
@@ -152,9 +146,8 @@ def save_config(config, logdir=None):
with tf.gfile.GFile(config_path, 'w') as file_:
yaml.dump(config, file_, default_flow_style=False)
else:
message = (
'Start a new run without storing summaries and checkpoints since no '
'logging directory was specified.')
message = ('Start a new run without storing summaries and checkpoints since no '
'logging directory was specified.')
tf.logging.info(message)
return config
@@ -173,9 +166,8 @@ def load_config(logdir):
"""
config_path = logdir and os.path.join(logdir, 'config.yaml')
if not config_path or not tf.gfile.Exists(config_path):
message = (
'Cannot resume an existing run since the logging directory does not '
'contain a configuration file.')
message = ('Cannot resume an existing run since the logging directory does not '
'contain a configuration file.')
raise IOError(message)
with tf.gfile.FastGFile(config_path, 'r') as file_:
config = yaml.load(file_, Loader=yaml.Loader)

View File

@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Script to render videos of the Proximal Policy Gradient algorithm.
Command line:
@@ -53,8 +52,7 @@ def _create_environment(config, outdir):
setattr(env, 'spec', getattr(env, 'spec', None))
if config.max_length:
env = tools.wrappers.LimitDuration(env, config.max_length)
env = gym.wrappers.Monitor(
env, outdir, lambda unused_episode_number: True)
env = gym.wrappers.Monitor(env, outdir, lambda unused_episode_number: True)
env = tools.wrappers.RangeNormalize(env)
env = tools.wrappers.ClipAction(env)
env = tools.wrappers.ConvertTo32Bit(env)
@@ -71,20 +69,20 @@ def _define_loop(graph, eval_steps):
Returns:
Loop object.
"""
loop = tools.Loop(
None, graph.step, graph.should_log, graph.do_report, graph.force_reset)
loop.add_phase(
'eval', graph.done, graph.score, graph.summary, eval_steps,
report_every=eval_steps,
log_every=None,
checkpoint_every=None,
feed={graph.is_training: False})
loop = tools.Loop(None, graph.step, graph.should_log, graph.do_report, graph.force_reset)
loop.add_phase('eval',
graph.done,
graph.score,
graph.summary,
eval_steps,
report_every=eval_steps,
log_every=None,
checkpoint_every=None,
feed={graph.is_training: False})
return loop
def visualize(
logdir, outdir, num_agents, num_episodes, checkpoint=None,
env_processes=True):
def visualize(logdir, outdir, num_agents, num_episodes, checkpoint=None, env_processes=True):
"""Recover checkpoint and render videos from it.
Args:
@@ -97,20 +95,16 @@ def visualize(
"""
config = utility.load_config(logdir)
with tf.device('/cpu:0'):
batch_env = utility.define_batch_env(
lambda: _create_environment(config, outdir),
num_agents, env_processes)
graph = utility.define_simulation_graph(
batch_env, config.algorithm, config)
batch_env = utility.define_batch_env(lambda: _create_environment(config, outdir), num_agents,
env_processes)
graph = utility.define_simulation_graph(batch_env, config.algorithm, config)
total_steps = num_episodes * config.max_length
loop = _define_loop(graph, total_steps)
saver = utility.define_saver(
exclude=(r'.*_temporary/.*', r'global_step'))
saver = utility.define_saver(exclude=(r'.*_temporary/.*', r'global_step'))
sess_config = tf.ConfigProto(allow_soft_placement=True)
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
utility.initialize_variables(
sess, saver, config.logdir, checkpoint, resume=True)
utility.initialize_variables(sess, saver, config.logdir, checkpoint, resume=True)
for unused_score in loop.run(sess, saver, total_steps):
pass
batch_env.close()
@@ -123,29 +117,18 @@ def main(_):
raise KeyError('You must specify logging and outdirs directories.')
FLAGS.logdir = os.path.expanduser(FLAGS.logdir)
FLAGS.outdir = os.path.expanduser(FLAGS.outdir)
visualize(
FLAGS.logdir, FLAGS.outdir, FLAGS.num_agents, FLAGS.num_episodes,
FLAGS.checkpoint, FLAGS.env_processes)
visualize(FLAGS.logdir, FLAGS.outdir, FLAGS.num_agents, FLAGS.num_episodes, FLAGS.checkpoint,
FLAGS.env_processes)
if __name__ == '__main__':
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string(
'logdir', None,
'Directory to the checkpoint of a training run.')
tf.app.flags.DEFINE_string(
'outdir', None,
'Local directory for storing the monitoring outdir.')
tf.app.flags.DEFINE_string(
'checkpoint', None,
'Checkpoint name to load; defaults to most recent.')
tf.app.flags.DEFINE_integer(
'num_agents', 1,
'How many environments to step in parallel.')
tf.app.flags.DEFINE_integer(
'num_episodes', 5,
'Minimum number of episodes to render.')
tf.app.flags.DEFINE_boolean(
'env_processes', True,
'Step environments in separate processes to circumvent the GIL.')
tf.app.flags.DEFINE_string('logdir', None, 'Directory to the checkpoint of a training run.')
tf.app.flags.DEFINE_string('outdir', None, 'Local directory for storing the monitoring outdir.')
tf.app.flags.DEFINE_string('checkpoint', None,
'Checkpoint name to load; defaults to most recent.')
tf.app.flags.DEFINE_integer('num_agents', 1, 'How many environments to step in parallel.')
tf.app.flags.DEFINE_integer('num_episodes', 5, 'Minimum number of episodes to render.')
tf.app.flags.DEFINE_boolean('env_processes', True,
'Step environments in separate processes to circumvent the GIL.')
tf.app.run()