add yapf style and apply yapf to format all Python files
This recreates pull request #2192
This commit is contained in:
@@ -11,7 +11,6 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Example configurations using the PPO algorithm."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
@@ -29,6 +28,7 @@ import pybullet_envs.bullet.minitaur_gym_env as minitaur_gym_env
|
||||
import pybullet_envs
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def default():
|
||||
"""Default configuration for PPO."""
|
||||
# General
|
||||
@@ -38,10 +38,7 @@ def default():
|
||||
use_gpu = False
|
||||
# Network
|
||||
network = networks.feed_forward_gaussian
|
||||
weight_summaries = dict(
|
||||
all=r'.*',
|
||||
policy=r'.*/policy/.*',
|
||||
value=r'.*/value/.*')
|
||||
weight_summaries = dict(all=r'.*', policy=r'.*/policy/.*', value=r'.*/value/.*')
|
||||
policy_layers = 200, 100
|
||||
value_layers = 200, 100
|
||||
init_mean_factor = 0.1
|
||||
@@ -52,7 +49,7 @@ def default():
|
||||
optimizer = tf.train.AdamOptimizer
|
||||
update_epochs_policy = 64
|
||||
update_epochs_value = 64
|
||||
learning_rate = 1e-4
|
||||
learning_rate = 1e-4
|
||||
# Losses
|
||||
discount = 0.995
|
||||
kl_target = 1e-2
|
||||
@@ -69,6 +66,7 @@ def pybullet_pendulum():
|
||||
steps = 5e7 # 50M
|
||||
return locals()
|
||||
|
||||
|
||||
def pybullet_doublependulum():
|
||||
locals().update(default())
|
||||
env = 'InvertedDoublePendulumBulletEnv-v0'
|
||||
@@ -76,6 +74,7 @@ def pybullet_doublependulum():
|
||||
steps = 5e7 # 50M
|
||||
return locals()
|
||||
|
||||
|
||||
def pybullet_pendulumswingup():
|
||||
locals().update(default())
|
||||
env = 'InvertedPendulumSwingupBulletEnv-v0'
|
||||
@@ -83,6 +82,7 @@ def pybullet_pendulumswingup():
|
||||
steps = 5e7 # 50M
|
||||
return locals()
|
||||
|
||||
|
||||
def pybullet_cheetah():
|
||||
"""Configuration for MuJoCo's half cheetah task."""
|
||||
locals().update(default())
|
||||
@@ -92,6 +92,7 @@ def pybullet_cheetah():
|
||||
steps = 1e8 # 100M
|
||||
return locals()
|
||||
|
||||
|
||||
def pybullet_ant():
|
||||
locals().update(default())
|
||||
env = 'AntBulletEnv-v0'
|
||||
@@ -99,6 +100,7 @@ def pybullet_ant():
|
||||
steps = 5e7 # 50M
|
||||
return locals()
|
||||
|
||||
|
||||
def pybullet_kuka_grasping():
|
||||
"""Configuration for Bullet Kuka grasping task."""
|
||||
locals().update(default())
|
||||
@@ -113,7 +115,7 @@ def pybullet_racecar():
|
||||
"""Configuration for Bullet MIT Racecar task."""
|
||||
locals().update(default())
|
||||
# Environment
|
||||
env = 'RacecarBulletEnv-v0' #functools.partial(racecarGymEnv.RacecarGymEnv, isDiscrete=False, renders=True)
|
||||
env = 'RacecarBulletEnv-v0' #functools.partial(racecarGymEnv.RacecarGymEnv, isDiscrete=False, renders=True)
|
||||
max_length = 10
|
||||
steps = 1e7 # 10M
|
||||
return locals()
|
||||
@@ -132,29 +134,27 @@ def pybullet_minitaur():
|
||||
"""Configuration specific to minitaur_gym_env.MinitaurBulletEnv class."""
|
||||
locals().update(default())
|
||||
randomizer = (minitaur_env_randomizer.MinitaurEnvRandomizer())
|
||||
env = functools.partial(
|
||||
minitaur_gym_env.MinitaurBulletEnv,
|
||||
accurate_motor_model_enabled=True,
|
||||
motor_overheat_protection=True,
|
||||
pd_control_enabled=True,
|
||||
env_randomizer=randomizer,
|
||||
render=False)
|
||||
env = functools.partial(minitaur_gym_env.MinitaurBulletEnv,
|
||||
accurate_motor_model_enabled=True,
|
||||
motor_overheat_protection=True,
|
||||
pd_control_enabled=True,
|
||||
env_randomizer=randomizer,
|
||||
render=False)
|
||||
max_length = 1000
|
||||
steps = 3e7 # 30M
|
||||
return locals()
|
||||
|
||||
|
||||
def pybullet_duck_minitaur():
|
||||
"""Configuration specific to minitaur_gym_env.MinitaurBulletDuckEnv class."""
|
||||
locals().update(default())
|
||||
randomizer = (minitaur_env_randomizer.MinitaurEnvRandomizer())
|
||||
env = functools.partial(
|
||||
minitaur_gym_env.MinitaurBulletDuckEnv,
|
||||
accurate_motor_model_enabled=True,
|
||||
motor_overheat_protection=True,
|
||||
pd_control_enabled=True,
|
||||
env_randomizer=randomizer,
|
||||
render=False)
|
||||
env = functools.partial(minitaur_gym_env.MinitaurBulletDuckEnv,
|
||||
accurate_motor_model_enabled=True,
|
||||
motor_overheat_protection=True,
|
||||
pd_control_enabled=True,
|
||||
env_randomizer=randomizer,
|
||||
render=False)
|
||||
max_length = 1000
|
||||
steps = 3e7 # 30M
|
||||
return locals()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user