add yapf style and apply yapf to format all Python files

This recreates pull request #2192
This commit is contained in:
Erwin Coumans
2019-04-27 07:31:15 -07:00
parent c591735042
commit ef9570c315
347 changed files with 70304 additions and 22752 deletions

View File

@@ -7,4 +7,3 @@ from . import train_kuka_grasping
from . import train_pybullet_cartpole
from . import train_pybullet_racecar
from . import train_pybullet_zed_racecar

View File

@@ -6,17 +6,17 @@ import numpy as np
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
os.sys.path.insert(0, parentdir)
import gym
from pybullet_envs.bullet.kuka_diverse_object_gym_env import KukaDiverseObjectEnv
from gym import spaces
class ContinuousDownwardBiasPolicy(object):
"""Policy which takes continuous actions, and is biased to move down.
"""
def __init__(self, height_hack_prob=0.9):
"""Initializes the DownwardBiasPolicy.
@@ -36,25 +36,25 @@ class ContinuousDownwardBiasPolicy(object):
def main():
env = KukaDiverseObjectEnv(renders=True, isDiscrete=False)
policy = ContinuousDownwardBiasPolicy()
while True:
obs, done = env.reset(), False
print("===================================")
print("obs")
print(obs)
episode_rew = 0
while not done:
env.render(mode='human')
act = policy.sample_action(obs, .1)
print("Action")
print(act)
obs, rew, done, _ = env.step([0, 0, 0, 0, 0])
episode_rew += rew
print("Episode reward", episode_rew)
env = KukaDiverseObjectEnv(renders=True, isDiscrete=False)
policy = ContinuousDownwardBiasPolicy()
while True:
obs, done = env.reset(), False
print("===================================")
print("obs")
print(obs)
episode_rew = 0
while not done:
env.render(mode='human')
act = policy.sample_action(obs, .1)
print("Action")
print(act)
obs, rew, done, _ = env.step([0, 0, 0, 0, 0])
episode_rew += rew
print("Episode reward", episode_rew)
if __name__ == '__main__':
main()
main()

View File

@@ -2,7 +2,7 @@
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
os.sys.path.insert(0, parentdir)
import gym
from pybullet_envs.bullet.kukaGymEnv import KukaGymEnv
@@ -11,22 +11,22 @@ from baselines import deepq
def main():
env = KukaGymEnv(renders=True, isDiscrete=True)
act = deepq.load("kuka_model.pkl")
print(act)
while True:
obs, done = env.reset(), False
print("===================================")
print("obs")
print(obs)
episode_rew = 0
while not done:
env.render()
obs, rew, done, _ = env.step(act(obs[None])[0])
episode_rew += rew
print("Episode reward", episode_rew)
env = KukaGymEnv(renders=True, isDiscrete=True)
act = deepq.load("kuka_model.pkl")
print(act)
while True:
obs, done = env.reset(), False
print("===================================")
print("obs")
print(obs)
episode_rew = 0
while not done:
env.render()
obs, rew, done, _ = env.step(act(obs[None])[0])
episode_rew += rew
print("Episode reward", episode_rew)
if __name__ == '__main__':
main()
main()

View File

@@ -2,7 +2,7 @@
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
os.sys.path.insert(0, parentdir)
import gym
import time
@@ -10,28 +10,29 @@ import time
from baselines import deepq
from pybullet_envs.bullet.cartpole_bullet import CartPoleBulletEnv
def main():
env = gym.make('CartPoleBulletEnv-v1')
act = deepq.load("cartpole_model.pkl")
while True:
obs, done = env.reset(), False
print("obs")
print(obs)
print("type(obs)")
print(type(obs))
episode_rew = 0
while not done:
env.render()
o = obs[None]
aa = act(o)
a = aa[0]
obs, rew, done, _ = env.step(a)
episode_rew += rew
time.sleep(1./240.)
print("Episode reward", episode_rew)
def main():
env = gym.make('CartPoleBulletEnv-v1')
act = deepq.load("cartpole_model.pkl")
while True:
obs, done = env.reset(), False
print("obs")
print(obs)
print("type(obs)")
print(type(obs))
episode_rew = 0
while not done:
env.render()
o = obs[None]
aa = act(o)
a = aa[0]
obs, rew, done, _ = env.step(a)
episode_rew += rew
time.sleep(1. / 240.)
print("Episode reward", episode_rew)
if __name__ == '__main__':
main()
main()

View File

@@ -2,7 +2,7 @@
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
os.sys.path.insert(0, parentdir)
import gym
from pybullet_envs.bullet.racecarGymEnv import RacecarGymEnv
@@ -11,22 +11,22 @@ from baselines import deepq
def main():
env = RacecarGymEnv(renders=True,isDiscrete=True)
act = deepq.load("racecar_model.pkl")
print(act)
while True:
obs, done = env.reset(), False
print("===================================")
print("obs")
print(obs)
episode_rew = 0
while not done:
env.render()
obs, rew, done, _ = env.step(act(obs[None])[0])
episode_rew += rew
print("Episode reward", episode_rew)
env = RacecarGymEnv(renders=True, isDiscrete=True)
act = deepq.load("racecar_model.pkl")
print(act)
while True:
obs, done = env.reset(), False
print("===================================")
print("obs")
print(obs)
episode_rew = 0
while not done:
env.render()
obs, rew, done, _ = env.step(act(obs[None])[0])
episode_rew += rew
print("Episode reward", episode_rew)
if __name__ == '__main__':
main()
main()

View File

@@ -2,7 +2,7 @@
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
os.sys.path.insert(0, parentdir)
import gym
from pybullet_envs.bullet.racecarZEDGymEnv import RacecarZEDGymEnv
@@ -11,22 +11,22 @@ from baselines import deepq
def main():
env = RacecarZEDGymEnv(renders=True)
act = deepq.load("racecar_zed_model.pkl")
print(act)
while True:
obs, done = env.reset(), False
print("===================================")
print("obs")
print(obs)
episode_rew = 0
while not done:
env.render()
obs, rew, done, _ = env.step(act(obs[None])[0])
episode_rew += rew
print("Episode reward", episode_rew)
env = RacecarZEDGymEnv(renders=True)
act = deepq.load("racecar_zed_model.pkl")
print(act)
while True:
obs, done = env.reset(), False
print("===================================")
print("obs")
print(obs)
episode_rew = 0
while not done:
env.render()
obs, rew, done, _ = env.step(act(obs[None])[0])
episode_rew += rew
print("Episode reward", episode_rew)
if __name__ == '__main__':
main()
main()

View File

@@ -2,7 +2,7 @@
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
os.sys.path.insert(0, parentdir)
import gym
from pybullet_envs.bullet.kukaCamGymEnv import KukaCamGymEnv
@@ -12,39 +12,34 @@ from baselines import deepq
import datetime
def callback(lcl, glb):
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
#print("totalt")
#print(totalt)
is_solved = totalt > 2000 and total >= 10
return is_solved
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
#print("totalt")
#print(totalt)
is_solved = totalt > 2000 and total >= 10
return is_solved
def main():
env = KukaCamGymEnv(renders=False, isDiscrete=True)
model = deepq.models.cnn_to_mlp(
convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)],
hiddens=[256],
dueling=False
)
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=10000000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback
)
print("Saving model to kuka_cam_model.pkl")
act.save("kuka_cam_model.pkl")
env = KukaCamGymEnv(renders=False, isDiscrete=True)
model = deepq.models.cnn_to_mlp(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)],
hiddens=[256],
dueling=False)
act = deepq.learn(env,
q_func=model,
lr=1e-3,
max_timesteps=10000000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback)
print("Saving model to kuka_cam_model.pkl")
act.save("kuka_cam_model.pkl")
if __name__ == '__main__':
main()
main()

View File

@@ -2,7 +2,7 @@
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
os.sys.path.insert(0, parentdir)
import gym
from pybullet_envs.bullet.kukaGymEnv import KukaGymEnv
@@ -12,35 +12,32 @@ from baselines import deepq
import datetime
def callback(lcl, glb):
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
#print("totalt")
#print(totalt)
is_solved = totalt > 2000 and total >= 10
return is_solved
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
#print("totalt")
#print(totalt)
is_solved = totalt > 2000 and total >= 10
return is_solved
def main():
env = KukaGymEnv(renders=False, isDiscrete=True)
model = deepq.models.mlp([64])
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=10000000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback
)
print("Saving model to kuka_model.pkl")
act.save("kuka_model.pkl")
env = KukaGymEnv(renders=False, isDiscrete=True)
model = deepq.models.mlp([64])
act = deepq.learn(env,
q_func=model,
lr=1e-3,
max_timesteps=10000000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback)
print("Saving model to kuka_model.pkl")
act.save("kuka_model.pkl")
if __name__ == '__main__':
main()
main()

View File

@@ -2,7 +2,7 @@
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
os.sys.path.insert(0, parentdir)
import gym
from pybullet_envs.bullet.cartpole_bullet import CartPoleBulletEnv
@@ -11,29 +11,27 @@ from baselines import deepq
def callback(lcl, glb):
# stop training if reward exceeds 199
is_solved = lcl['t'] > 100 and sum(lcl['episode_rewards'][-101:-1]) / 100 >= 199
return is_solved
# stop training if reward exceeds 199
is_solved = lcl['t'] > 100 and sum(lcl['episode_rewards'][-101:-1]) / 100 >= 199
return is_solved
def main():
env = CartPoleBulletEnv(renders=False)
model = deepq.models.mlp([64])
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=100000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback
)
print("Saving model to cartpole_model.pkl")
act.save("cartpole_model.pkl")
env = CartPoleBulletEnv(renders=False)
model = deepq.models.mlp([64])
act = deepq.learn(env,
q_func=model,
lr=1e-3,
max_timesteps=100000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback)
print("Saving model to cartpole_model.pkl")
act.save("cartpole_model.pkl")
if __name__ == '__main__':
main()
main()

View File

@@ -2,7 +2,7 @@
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
os.sys.path.insert(0, parentdir)
import gym
from pybullet_envs.bullet.racecarGymEnv import RacecarGymEnv
@@ -12,33 +12,30 @@ from baselines import deepq
import datetime
def callback(lcl, glb):
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
is_solved = totalt > 2000 and total >= -50
return is_solved
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
is_solved = totalt > 2000 and total >= -50
return is_solved
def main():
env = RacecarGymEnv(renders=False,isDiscrete=True)
model = deepq.models.mlp([64])
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=10000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback
)
print("Saving model to racecar_model.pkl")
act.save("racecar_model.pkl")
env = RacecarGymEnv(renders=False, isDiscrete=True)
model = deepq.models.mlp([64])
act = deepq.learn(env,
q_func=model,
lr=1e-3,
max_timesteps=10000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback)
print("Saving model to racecar_model.pkl")
act.save("racecar_model.pkl")
if __name__ == '__main__':
main()
main()

View File

@@ -2,7 +2,7 @@
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0,parentdir)
os.sys.path.insert(0, parentdir)
import gym
from pybullet_envs.bullet.racecarZEDGymEnv import RacecarZEDGymEnv
@@ -12,36 +12,32 @@ from baselines import deepq
import datetime
def callback(lcl, glb):
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
is_solved = totalt > 2000 and total >= -50
return is_solved
# stop training if reward exceeds 199
total = sum(lcl['episode_rewards'][-101:-1]) / 100
totalt = lcl['t']
is_solved = totalt > 2000 and total >= -50
return is_solved
def main():
env = RacecarZEDGymEnv(renders=False, isDiscrete=True)
model = deepq.models.cnn_to_mlp(
convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)],
hiddens=[256],
dueling=False
)
act = deepq.learn(
env,
q_func=model,
lr=1e-3,
max_timesteps=10000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback
)
print("Saving model to racecar_zed_model.pkl")
act.save("racecar_zed_model.pkl")
env = RacecarZEDGymEnv(renders=False, isDiscrete=True)
model = deepq.models.cnn_to_mlp(convs=[(32, 8, 4), (64, 4, 2), (64, 3, 1)],
hiddens=[256],
dueling=False)
act = deepq.learn(env,
q_func=model,
lr=1e-3,
max_timesteps=10000,
buffer_size=50000,
exploration_fraction=0.1,
exploration_final_eps=0.02,
print_freq=10,
callback=callback)
print("Saving model to racecar_zed_model.pkl")
act.save("racecar_zed_model.pkl")
if __name__ == '__main__':
main()
main()