add yapf style and apply yapf to format all Python files
This recreates pull request #2192
This commit is contained in:
@@ -11,7 +11,6 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Executable scripts for reinforcement learning."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
|
||||
@@ -11,7 +11,6 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Example configurations using the PPO algorithm."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
@@ -33,10 +32,7 @@ def default():
|
||||
use_gpu = False
|
||||
# Network
|
||||
network = networks.ForwardGaussianPolicy
|
||||
weight_summaries = dict(
|
||||
all=r'.*',
|
||||
policy=r'.*/policy/.*',
|
||||
value=r'.*/value/.*')
|
||||
weight_summaries = dict(all=r'.*', policy=r'.*/policy/.*', value=r'.*/value/.*')
|
||||
policy_layers = 200, 100
|
||||
value_layers = 200, 100
|
||||
init_mean_factor = 0.05
|
||||
|
||||
@@ -11,7 +11,6 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Networks for the PPO algorithm defined as recurrent cells."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
@@ -20,11 +19,10 @@ from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
_MEAN_WEIGHTS_INITIALIZER = tf.contrib.layers.variance_scaling_initializer(
|
||||
factor=0.1)
|
||||
_MEAN_WEIGHTS_INITIALIZER = tf.contrib.layers.variance_scaling_initializer(factor=0.1)
|
||||
_LOGSTD_INITIALIZER = tf.random_normal_initializer(-1, 1e-10)
|
||||
|
||||
|
||||
class LinearGaussianPolicy(tf.contrib.rnn.RNNCell):
|
||||
"""Indepent linear network with a tanh at the end for policy and feedforward network for the value.
|
||||
|
||||
@@ -56,15 +54,12 @@ class LinearGaussianPolicy(tf.contrib.rnn.RNNCell):
|
||||
def __call__(self, observation, state):
|
||||
with tf.variable_scope('policy'):
|
||||
x = tf.contrib.layers.flatten(observation)
|
||||
mean = tf.contrib.layers.fully_connected(
|
||||
x,
|
||||
self._action_size,
|
||||
tf.tanh,
|
||||
weights_initializer=self._mean_weights_initializer)
|
||||
logstd = tf.get_variable('logstd', mean.shape[1:], tf.float32,
|
||||
self._logstd_initializer)
|
||||
logstd = tf.tile(logstd[None, ...],
|
||||
[tf.shape(mean)[0]] + [1] * logstd.shape.ndims)
|
||||
mean = tf.contrib.layers.fully_connected(x,
|
||||
self._action_size,
|
||||
tf.tanh,
|
||||
weights_initializer=self._mean_weights_initializer)
|
||||
logstd = tf.get_variable('logstd', mean.shape[1:], tf.float32, self._logstd_initializer)
|
||||
logstd = tf.tile(logstd[None, ...], [tf.shape(mean)[0]] + [1] * logstd.shape.ndims)
|
||||
with tf.variable_scope('value'):
|
||||
x = tf.contrib.layers.flatten(observation)
|
||||
for size in self._value_layers:
|
||||
@@ -80,10 +75,12 @@ class ForwardGaussianPolicy(tf.contrib.rnn.RNNCell):
|
||||
is learned as independent parameter vector.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, policy_layers, value_layers, action_size,
|
||||
mean_weights_initializer=_MEAN_WEIGHTS_INITIALIZER,
|
||||
logstd_initializer=_LOGSTD_INITIALIZER):
|
||||
def __init__(self,
|
||||
policy_layers,
|
||||
value_layers,
|
||||
action_size,
|
||||
mean_weights_initializer=_MEAN_WEIGHTS_INITIALIZER,
|
||||
logstd_initializer=_LOGSTD_INITIALIZER):
|
||||
self._policy_layers = policy_layers
|
||||
self._value_layers = value_layers
|
||||
self._action_size = action_size
|
||||
@@ -104,13 +101,12 @@ class ForwardGaussianPolicy(tf.contrib.rnn.RNNCell):
|
||||
x = tf.contrib.layers.flatten(observation)
|
||||
for size in self._policy_layers:
|
||||
x = tf.contrib.layers.fully_connected(x, size, tf.nn.relu)
|
||||
mean = tf.contrib.layers.fully_connected(
|
||||
x, self._action_size, tf.tanh,
|
||||
weights_initializer=self._mean_weights_initializer)
|
||||
logstd = tf.get_variable(
|
||||
'logstd', mean.shape[1:], tf.float32, self._logstd_initializer)
|
||||
logstd = tf.tile(
|
||||
logstd[None, ...], [tf.shape(mean)[0]] + [1] * logstd.shape.ndims)
|
||||
mean = tf.contrib.layers.fully_connected(x,
|
||||
self._action_size,
|
||||
tf.tanh,
|
||||
weights_initializer=self._mean_weights_initializer)
|
||||
logstd = tf.get_variable('logstd', mean.shape[1:], tf.float32, self._logstd_initializer)
|
||||
logstd = tf.tile(logstd[None, ...], [tf.shape(mean)[0]] + [1] * logstd.shape.ndims)
|
||||
with tf.variable_scope('value'):
|
||||
x = tf.contrib.layers.flatten(observation)
|
||||
for size in self._value_layers:
|
||||
@@ -127,10 +123,12 @@ class RecurrentGaussianPolicy(tf.contrib.rnn.RNNCell):
|
||||
and uses a GRU cell.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, policy_layers, value_layers, action_size,
|
||||
mean_weights_initializer=_MEAN_WEIGHTS_INITIALIZER,
|
||||
logstd_initializer=_LOGSTD_INITIALIZER):
|
||||
def __init__(self,
|
||||
policy_layers,
|
||||
value_layers,
|
||||
action_size,
|
||||
mean_weights_initializer=_MEAN_WEIGHTS_INITIALIZER,
|
||||
logstd_initializer=_LOGSTD_INITIALIZER):
|
||||
self._policy_layers = policy_layers
|
||||
self._value_layers = value_layers
|
||||
self._action_size = action_size
|
||||
@@ -152,13 +150,12 @@ class RecurrentGaussianPolicy(tf.contrib.rnn.RNNCell):
|
||||
for size in self._policy_layers[:-1]:
|
||||
x = tf.contrib.layers.fully_connected(x, size, tf.nn.relu)
|
||||
x, state = self._cell(x, state)
|
||||
mean = tf.contrib.layers.fully_connected(
|
||||
x, self._action_size, tf.tanh,
|
||||
weights_initializer=self._mean_weights_initializer)
|
||||
logstd = tf.get_variable(
|
||||
'logstd', mean.shape[1:], tf.float32, self._logstd_initializer)
|
||||
logstd = tf.tile(
|
||||
logstd[None, ...], [tf.shape(mean)[0]] + [1] * logstd.shape.ndims)
|
||||
mean = tf.contrib.layers.fully_connected(x,
|
||||
self._action_size,
|
||||
tf.tanh,
|
||||
weights_initializer=self._mean_weights_initializer)
|
||||
logstd = tf.get_variable('logstd', mean.shape[1:], tf.float32, self._logstd_initializer)
|
||||
logstd = tf.tile(logstd[None, ...], [tf.shape(mean)[0]] + [1] * logstd.shape.ndims)
|
||||
with tf.variable_scope('value'):
|
||||
x = tf.contrib.layers.flatten(observation)
|
||||
for size in self._value_layers:
|
||||
|
||||
@@ -11,7 +11,6 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
r"""Script to train a batch reinforcement learning algorithm.
|
||||
|
||||
Command line:
|
||||
@@ -68,21 +67,25 @@ def _define_loop(graph, logdir, train_steps, eval_steps):
|
||||
Returns:
|
||||
Loop object.
|
||||
"""
|
||||
loop = tools.Loop(
|
||||
logdir, graph.step, graph.should_log, graph.do_report,
|
||||
graph.force_reset)
|
||||
loop.add_phase(
|
||||
'train', graph.done, graph.score, graph.summary, train_steps,
|
||||
report_every=None,
|
||||
log_every=train_steps // 2,
|
||||
checkpoint_every=None,
|
||||
feed={graph.is_training: True})
|
||||
loop.add_phase(
|
||||
'eval', graph.done, graph.score, graph.summary, eval_steps,
|
||||
report_every=eval_steps,
|
||||
log_every=eval_steps // 2,
|
||||
checkpoint_every=10 * eval_steps,
|
||||
feed={graph.is_training: False})
|
||||
loop = tools.Loop(logdir, graph.step, graph.should_log, graph.do_report, graph.force_reset)
|
||||
loop.add_phase('train',
|
||||
graph.done,
|
||||
graph.score,
|
||||
graph.summary,
|
||||
train_steps,
|
||||
report_every=None,
|
||||
log_every=train_steps // 2,
|
||||
checkpoint_every=None,
|
||||
feed={graph.is_training: True})
|
||||
loop.add_phase('eval',
|
||||
graph.done,
|
||||
graph.score,
|
||||
graph.summary,
|
||||
eval_steps,
|
||||
report_every=eval_steps,
|
||||
log_every=eval_steps // 2,
|
||||
checkpoint_every=10 * eval_steps,
|
||||
feed={graph.is_training: False})
|
||||
return loop
|
||||
|
||||
|
||||
@@ -101,25 +104,19 @@ def train(config, env_processes):
|
||||
"""
|
||||
tf.reset_default_graph()
|
||||
with config.unlocked:
|
||||
config.network = functools.partial(
|
||||
utility.define_network, config.network, config)
|
||||
config.network = functools.partial(utility.define_network, config.network, config)
|
||||
config.policy_optimizer = getattr(tf.train, config.policy_optimizer)
|
||||
config.value_optimizer = getattr(tf.train, config.value_optimizer)
|
||||
if config.update_every % config.num_agents:
|
||||
tf.logging.warn('Number of agents should divide episodes per update.')
|
||||
with tf.device('/cpu:0'):
|
||||
batch_env = utility.define_batch_env(
|
||||
lambda: _create_environment(config),
|
||||
config.num_agents, env_processes)
|
||||
graph = utility.define_simulation_graph(
|
||||
batch_env, config.algorithm, config)
|
||||
loop = _define_loop(
|
||||
graph, config.logdir,
|
||||
config.update_every * config.max_length,
|
||||
config.eval_episodes * config.max_length)
|
||||
total_steps = int(
|
||||
config.steps / config.update_every *
|
||||
(config.update_every + config.eval_episodes))
|
||||
batch_env = utility.define_batch_env(lambda: _create_environment(config), config.num_agents,
|
||||
env_processes)
|
||||
graph = utility.define_simulation_graph(batch_env, config.algorithm, config)
|
||||
loop = _define_loop(graph, config.logdir, config.update_every * config.max_length,
|
||||
config.eval_episodes * config.max_length)
|
||||
total_steps = int(config.steps / config.update_every *
|
||||
(config.update_every + config.eval_episodes))
|
||||
# Exclude episode related variables since the Python state of environments is
|
||||
# not checkpointed and thus new episodes start after resuming.
|
||||
saver = utility.define_saver(exclude=(r'.*_temporary/.*',))
|
||||
@@ -137,8 +134,8 @@ def main(_):
|
||||
utility.set_up_logging()
|
||||
if not FLAGS.config:
|
||||
raise KeyError('You must specify a configuration.')
|
||||
logdir = FLAGS.logdir and os.path.expanduser(os.path.join(
|
||||
FLAGS.logdir, '{}-{}'.format(FLAGS.timestamp, FLAGS.config)))
|
||||
logdir = FLAGS.logdir and os.path.expanduser(
|
||||
os.path.join(FLAGS.logdir, '{}-{}'.format(FLAGS.timestamp, FLAGS.config)))
|
||||
try:
|
||||
config = utility.load_config(logdir)
|
||||
except IOError:
|
||||
@@ -150,16 +147,11 @@ def main(_):
|
||||
|
||||
if __name__ == '__main__':
|
||||
FLAGS = tf.app.flags.FLAGS
|
||||
tf.app.flags.DEFINE_string(
|
||||
'logdir', None,
|
||||
'Base directory to store logs.')
|
||||
tf.app.flags.DEFINE_string(
|
||||
'timestamp', datetime.datetime.now().strftime('%Y%m%dT%H%M%S'),
|
||||
'Sub directory to store logs.')
|
||||
tf.app.flags.DEFINE_string(
|
||||
'config', None,
|
||||
'Configuration to execute.')
|
||||
tf.app.flags.DEFINE_boolean(
|
||||
'env_processes', True,
|
||||
'Step environments in separate processes to circumvent the GIL.')
|
||||
tf.app.flags.DEFINE_string('logdir', None, 'Base directory to store logs.')
|
||||
tf.app.flags.DEFINE_string('timestamp',
|
||||
datetime.datetime.now().strftime('%Y%m%dT%H%M%S'),
|
||||
'Sub directory to store logs.')
|
||||
tf.app.flags.DEFINE_string('config', None, 'Configuration to execute.')
|
||||
tf.app.flags.DEFINE_boolean('env_processes', True,
|
||||
'Step environments in separate processes to circumvent the GIL.')
|
||||
tf.app.run()
|
||||
|
||||
@@ -11,7 +11,6 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tests for the PPO algorithm usage example."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
@@ -29,7 +28,6 @@ from google3.robotics.reinforcement_learning.agents.scripts import configs
|
||||
from google3.robotics.reinforcement_learning.agents.scripts import networks
|
||||
from google3.robotics.reinforcement_learning.agents.scripts import train
|
||||
|
||||
|
||||
FLAGS = tf.app.flags.FLAGS
|
||||
|
||||
|
||||
@@ -65,9 +63,11 @@ class PPOTest(tf.test.TestCase):
|
||||
for network, observ_shape in itertools.product(nets, observ_shapes):
|
||||
config = self._define_config()
|
||||
with config.unlocked:
|
||||
config.env = functools.partial(
|
||||
tools.MockEnvironment, observ_shape, action_shape=(3,),
|
||||
min_duration=15, max_duration=15)
|
||||
config.env = functools.partial(tools.MockEnvironment,
|
||||
observ_shape,
|
||||
action_shape=(3,),
|
||||
min_duration=15,
|
||||
max_duration=15)
|
||||
config.max_length = 20
|
||||
config.steps = 100
|
||||
config.network = network
|
||||
@@ -77,9 +77,11 @@ class PPOTest(tf.test.TestCase):
|
||||
def test_no_crash_variable_duration(self):
|
||||
config = self._define_config()
|
||||
with config.unlocked:
|
||||
config.env = functools.partial(
|
||||
tools.MockEnvironment, observ_shape=(2, 3), action_shape=(3,),
|
||||
min_duration=5, max_duration=25)
|
||||
config.env = functools.partial(tools.MockEnvironment,
|
||||
observ_shape=(2, 3),
|
||||
action_shape=(3,),
|
||||
min_duration=5,
|
||||
max_duration=25)
|
||||
config.max_length = 25
|
||||
config.steps = 200
|
||||
config.network = networks.RecurrentGaussianPolicy
|
||||
|
||||
@@ -11,7 +11,6 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Utilities for using reinforcement learning algorithms."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
@@ -46,8 +45,7 @@ def define_simulation_graph(batch_env, algo_cls, config):
|
||||
do_report = tf.placeholder(tf.bool, name='do_report')
|
||||
force_reset = tf.placeholder(tf.bool, name='force_reset')
|
||||
algo = algo_cls(batch_env, step, is_training, should_log, config)
|
||||
done, score, summary = tools.simulate(
|
||||
batch_env, algo, should_log, force_reset)
|
||||
done, score, summary = tools.simulate(batch_env, algo, should_log, force_reset)
|
||||
message = 'Graph contains {} trainable variables.'
|
||||
tf.logging.info(message.format(tools.count_weights()))
|
||||
# pylint: enable=unused-variable
|
||||
@@ -67,9 +65,7 @@ def define_batch_env(constructor, num_agents, env_processes):
|
||||
"""
|
||||
with tf.variable_scope('environments'):
|
||||
if env_processes:
|
||||
envs = [
|
||||
tools.wrappers.ExternalProcess(constructor)
|
||||
for _ in range(num_agents)]
|
||||
envs = [tools.wrappers.ExternalProcess(constructor) for _ in range(num_agents)]
|
||||
else:
|
||||
envs = [constructor() for _ in range(num_agents)]
|
||||
batch_env = tools.BatchEnv(envs, blocking=not env_processes)
|
||||
@@ -108,15 +104,14 @@ def define_network(constructor, config, action_size):
|
||||
Returns:
|
||||
Created recurrent cell object.
|
||||
"""
|
||||
mean_weights_initializer = (
|
||||
tf.contrib.layers.variance_scaling_initializer(
|
||||
factor=config.init_mean_factor))
|
||||
logstd_initializer = tf.random_normal_initializer(
|
||||
config.init_logstd, 1e-10)
|
||||
network = constructor(
|
||||
config.policy_layers, config.value_layers, action_size,
|
||||
mean_weights_initializer=mean_weights_initializer,
|
||||
logstd_initializer=logstd_initializer)
|
||||
mean_weights_initializer = (tf.contrib.layers.variance_scaling_initializer(
|
||||
factor=config.init_mean_factor))
|
||||
logstd_initializer = tf.random_normal_initializer(config.init_logstd, 1e-10)
|
||||
network = constructor(config.policy_layers,
|
||||
config.value_layers,
|
||||
action_size,
|
||||
mean_weights_initializer=mean_weights_initializer,
|
||||
logstd_initializer=logstd_initializer)
|
||||
return network
|
||||
|
||||
|
||||
@@ -134,9 +129,7 @@ def initialize_variables(sess, saver, logdir, checkpoint=None, resume=None):
|
||||
ValueError: If resume expected but no log directory specified.
|
||||
RuntimeError: If no resume expected but a checkpoint was found.
|
||||
"""
|
||||
sess.run(tf.group(
|
||||
tf.local_variables_initializer(),
|
||||
tf.global_variables_initializer()))
|
||||
sess.run(tf.group(tf.local_variables_initializer(), tf.global_variables_initializer()))
|
||||
if resume and not (logdir or checkpoint):
|
||||
raise ValueError('Need to specify logdir to resume a checkpoint.')
|
||||
if logdir:
|
||||
@@ -175,9 +168,8 @@ def save_config(config, logdir=None):
|
||||
with tf.gfile.GFile(config_path, 'w') as file_:
|
||||
yaml.dump(config, file_, default_flow_style=False)
|
||||
else:
|
||||
message = (
|
||||
'Start a new run without storing summaries and checkpoints since no '
|
||||
'logging directory was specified.')
|
||||
message = ('Start a new run without storing summaries and checkpoints since no '
|
||||
'logging directory was specified.')
|
||||
tf.logging.info(message)
|
||||
return config
|
||||
|
||||
@@ -196,9 +188,8 @@ def load_config(logdir):
|
||||
"""
|
||||
config_path = logdir and os.path.join(logdir, 'config.yaml')
|
||||
if not config_path or not tf.gfile.Exists(config_path):
|
||||
message = (
|
||||
'Cannot resume an existing run since the logging directory does not '
|
||||
'contain a configuration file.')
|
||||
message = ('Cannot resume an existing run since the logging directory does not '
|
||||
'contain a configuration file.')
|
||||
raise IOError(message)
|
||||
with tf.gfile.FastGFile(config_path, 'r') as file_:
|
||||
config = yaml.load(file_)
|
||||
|
||||
@@ -11,7 +11,6 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
r"""Script to render videos of the Proximal Policy Gradient algorithm.
|
||||
|
||||
Command line:
|
||||
@@ -54,6 +53,8 @@ def _create_environment(config, outdir):
|
||||
setattr(env, 'spec', getattr(env, 'spec', None))
|
||||
if config.max_length:
|
||||
env = tools.wrappers.LimitDuration(env, config.max_length)
|
||||
|
||||
|
||||
# env = gym.wrappers.Monitor(
|
||||
# env, outdir, lambda unused_episode_number: True)
|
||||
env = tools.wrappers.RangeNormalize(env)
|
||||
@@ -72,20 +73,20 @@ def _define_loop(graph, eval_steps):
|
||||
Returns:
|
||||
Loop object.
|
||||
"""
|
||||
loop = tools.Loop(
|
||||
None, graph.step, graph.should_log, graph.do_report, graph.force_reset)
|
||||
loop.add_phase(
|
||||
'eval', graph.done, graph.score, graph.summary, eval_steps,
|
||||
report_every=eval_steps,
|
||||
log_every=None,
|
||||
checkpoint_every=None,
|
||||
feed={graph.is_training: False})
|
||||
loop = tools.Loop(None, graph.step, graph.should_log, graph.do_report, graph.force_reset)
|
||||
loop.add_phase('eval',
|
||||
graph.done,
|
||||
graph.score,
|
||||
graph.summary,
|
||||
eval_steps,
|
||||
report_every=eval_steps,
|
||||
log_every=None,
|
||||
checkpoint_every=None,
|
||||
feed={graph.is_training: False})
|
||||
return loop
|
||||
|
||||
|
||||
def visualize(
|
||||
logdir, outdir, num_agents, num_episodes, checkpoint=None,
|
||||
env_processes=True):
|
||||
def visualize(logdir, outdir, num_agents, num_episodes, checkpoint=None, env_processes=True):
|
||||
"""Recover checkpoint and render videos from it.
|
||||
|
||||
Args:
|
||||
@@ -98,25 +99,20 @@ def visualize(
|
||||
"""
|
||||
config = utility.load_config(logdir)
|
||||
with config.unlocked:
|
||||
config.network = functools.partial(
|
||||
utility.define_network, config.network, config)
|
||||
config.network = functools.partial(utility.define_network, config.network, config)
|
||||
config.policy_optimizer = getattr(tf.train, config.policy_optimizer)
|
||||
config.value_optimizer = getattr(tf.train, config.value_optimizer)
|
||||
with tf.device('/cpu:0'):
|
||||
batch_env = utility.define_batch_env(
|
||||
lambda: _create_environment(config, outdir),
|
||||
num_agents, env_processes)
|
||||
graph = utility.define_simulation_graph(
|
||||
batch_env, config.algorithm, config)
|
||||
batch_env = utility.define_batch_env(lambda: _create_environment(config, outdir), num_agents,
|
||||
env_processes)
|
||||
graph = utility.define_simulation_graph(batch_env, config.algorithm, config)
|
||||
total_steps = num_episodes * config.max_length
|
||||
loop = _define_loop(graph, total_steps)
|
||||
saver = utility.define_saver(
|
||||
exclude=(r'.*_temporary/.*', r'global_step'))
|
||||
saver = utility.define_saver(exclude=(r'.*_temporary/.*', r'global_step'))
|
||||
sess_config = tf.ConfigProto(allow_soft_placement=True)
|
||||
sess_config.gpu_options.allow_growth = True
|
||||
with tf.Session(config=sess_config) as sess:
|
||||
utility.initialize_variables(
|
||||
sess, saver, config.logdir, checkpoint, resume=True)
|
||||
utility.initialize_variables(sess, saver, config.logdir, checkpoint, resume=True)
|
||||
for unused_score in loop.run(sess, saver, total_steps):
|
||||
pass
|
||||
batch_env.close()
|
||||
@@ -129,29 +125,18 @@ def main(_):
|
||||
raise KeyError('You must specify logging and outdirs directories.')
|
||||
FLAGS.logdir = os.path.expanduser(FLAGS.logdir)
|
||||
FLAGS.outdir = os.path.expanduser(FLAGS.outdir)
|
||||
visualize(
|
||||
FLAGS.logdir, FLAGS.outdir, FLAGS.num_agents, FLAGS.num_episodes,
|
||||
FLAGS.checkpoint, FLAGS.env_processes)
|
||||
visualize(FLAGS.logdir, FLAGS.outdir, FLAGS.num_agents, FLAGS.num_episodes, FLAGS.checkpoint,
|
||||
FLAGS.env_processes)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
FLAGS = tf.app.flags.FLAGS
|
||||
tf.app.flags.DEFINE_string(
|
||||
'logdir', None,
|
||||
'Directory to the checkpoint of a training run.')
|
||||
tf.app.flags.DEFINE_string(
|
||||
'outdir', None,
|
||||
'Local directory for storing the monitoring outdir.')
|
||||
tf.app.flags.DEFINE_string(
|
||||
'checkpoint', None,
|
||||
'Checkpoint name to load; defaults to most recent.')
|
||||
tf.app.flags.DEFINE_integer(
|
||||
'num_agents', 1,
|
||||
'How many environments to step in parallel.')
|
||||
tf.app.flags.DEFINE_integer(
|
||||
'num_episodes', 5,
|
||||
'Minimum number of episodes to render.')
|
||||
tf.app.flags.DEFINE_boolean(
|
||||
'env_processes', True,
|
||||
'Step environments in separate processes to circumvent the GIL.')
|
||||
tf.app.flags.DEFINE_string('logdir', None, 'Directory to the checkpoint of a training run.')
|
||||
tf.app.flags.DEFINE_string('outdir', None, 'Local directory for storing the monitoring outdir.')
|
||||
tf.app.flags.DEFINE_string('checkpoint', None,
|
||||
'Checkpoint name to load; defaults to most recent.')
|
||||
tf.app.flags.DEFINE_integer('num_agents', 1, 'How many environments to step in parallel.')
|
||||
tf.app.flags.DEFINE_integer('num_episodes', 5, 'Minimum number of episodes to render.')
|
||||
tf.app.flags.DEFINE_boolean('env_processes', True,
|
||||
'Step environments in separate processes to circumvent the GIL.')
|
||||
tf.app.run()
|
||||
|
||||
Reference in New Issue
Block a user