wrapped up first version of the FractureDemo

move 'split impulse' / position solver before velocity solver, so that applied impulse is available for fracture
add btSliderConstraint::getAngularPos see http://code.google.com/p/bullet/issues/detail?id=489
This commit is contained in:
erwin.coumans
2011-03-18 00:20:52 +00:00
parent 74a65a6207
commit f17fa297d5
6 changed files with 172 additions and 149 deletions

View File

@@ -50,7 +50,7 @@ int sFrameNumber = 0;
void FractureDemo::initPhysics() void FractureDemo::initPhysics()
{ {
setTexturing(true); setTexturing(true);
setShadows(true); setShadows(true);
@@ -73,45 +73,37 @@ void FractureDemo::initPhysics()
//m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration); //m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
m_dynamicsWorld = new btFractureDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration); btFractureDynamicsWorld* fractureWorld = new btFractureDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
m_dynamicsWorld = fractureWorld;
m_dynamicsWorld->getDispatchInfo().m_convexMaxDistanceUseCPT = true;
m_ShootBoxInitialSpeed=100;
//m_splitImpulse removes the penetration resolution from the applied impulse, otherwise objects might fracture due to deep penetrations. //m_splitImpulse removes the penetration resolution from the applied impulse, otherwise objects might fracture due to deep penetrations.
m_dynamicsWorld->getSolverInfo().m_splitImpulse = true; m_dynamicsWorld->getSolverInfo().m_splitImpulse = true;
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
///create a few basic rigid bodies
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(50.),btScalar(50.),btScalar(50.)));
// btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50);
m_collisionShapes.push_back(groundShape);
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,-50,0));
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
{ {
btScalar mass(0.); ///create a few basic rigid bodies
btCollisionShape* groundShape = new btBoxShape(btVector3(50,1,50));
//rigidbody is dynamic if and only if mass is non zero, otherwise static /// btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),0);
bool isDynamic = (mass != 0.f); m_collisionShapes.push_back(groundShape);
btTransform groundTransform;
btVector3 localInertia(0,0,0); groundTransform.setIdentity();
if (isDynamic) groundTransform.setOrigin(btVector3(0,0,0));
groundShape->calculateLocalInertia(mass,localInertia); localCreateRigidBody(0.f,groundTransform,groundShape);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
//add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body);
} }
{
///create a few basic rigid bodies
btCollisionShape* shape = new btBoxShape(btVector3(1,1,1));
m_collisionShapes.push_back(shape);
btTransform tr;
tr.setIdentity();
tr.setOrigin(btVector3(5,2,0));
localCreateRigidBody(0.f,tr,shape);
}
{ {
//create a few dynamic rigidbodies //create a few dynamic rigidbodies
@@ -136,45 +128,52 @@ void FractureDemo::initPhysics()
colShape->calculateLocalInertia(mass,localInertia); colShape->calculateLocalInertia(mass,localInertia);
int gNumObjects = 10; int gNumObjects = 10;
for (int i=0;i<gNumObjects;i++) for (int i=0;i<gNumObjects;i++)
{ {
btTransform trans; btTransform trans;
trans.setIdentity(); trans.setIdentity();
btVector3 pos(i*2*CUBE_HALF_EXTENTS ,10,0); btVector3 pos(i*2*CUBE_HALF_EXTENTS ,20,0);
trans.setOrigin(pos); trans.setOrigin(pos);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(trans); btDefaultMotionState* myMotionState = new btDefaultMotionState(trans);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia);
btFractureBody* body = new btFractureBody(rbInfo, m_dynamicsWorld); btFractureBody* body = new btFractureBody(rbInfo, m_dynamicsWorld);
body->setLinearVelocity(btVector3(0,-10,0));
body->setActivationState(ISLAND_SLEEPING);
m_dynamicsWorld->addRigidBody(body); m_dynamicsWorld->addRigidBody(body);
body->setActivationState(ISLAND_SLEEPING);
}
}
} }
clientResetScene();
fractureWorld->stepSimulation(1./60.,0);
fractureWorld->glueCallback();
} }
void FractureDemo::clientResetScene()
{
exitPhysics();
initPhysics();
}
void FractureDemo::clientMoveAndDisplay() void FractureDemo::clientMoveAndDisplay()
{ {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
//simple dynamics world doesn't handle fixed-time-stepping //simple dynamics world doesn't handle fixed-time-stepping
float ms = getDeltaTimeMicroseconds(); float ms = getDeltaTimeMicroseconds();
///step the simulation ///step the simulation
if (m_dynamicsWorld) if (m_dynamicsWorld)
{ {
@@ -182,13 +181,13 @@ void FractureDemo::clientMoveAndDisplay()
//optional but useful: debug drawing //optional but useful: debug drawing
m_dynamicsWorld->debugDrawWorld(); m_dynamicsWorld->debugDrawWorld();
} }
renderme(); renderme();
showMessage(); showMessage();
glFlush(); glFlush();
swapBuffers(); swapBuffers();
@@ -203,12 +202,11 @@ void FractureDemo::showMessage()
glDisable(GL_LIGHTING); glDisable(GL_LIGHTING);
glColor3f(0, 0, 0); glColor3f(0, 0, 0);
char buf[124]; char buf[124];
int lineWidth=350; int lineWidth=380;
int xStart = m_glutScreenWidth - lineWidth; int xStart = m_glutScreenWidth - lineWidth;
int yStart = 20; int yStart = 20;
glRasterPos3f(xStart, yStart, 0);
btFractureDynamicsWorld* world = (btFractureDynamicsWorld*)m_dynamicsWorld; btFractureDynamicsWorld* world = (btFractureDynamicsWorld*)m_dynamicsWorld;
if (world->getFractureMode()) if (world->getFractureMode())
{ {
@@ -217,12 +215,14 @@ void FractureDemo::showMessage()
{ {
sprintf(buf,"Glue mode"); sprintf(buf,"Glue mode");
} }
GLDebugDrawString(xStart,20,buf); GLDebugDrawString(xStart,yStart,buf);
yStart+=20;
glRasterPos3f(xStart, yStart, 0);
sprintf(buf,"f to toggle fracture/glue mode"); sprintf(buf,"f to toggle fracture/glue mode");
yStart+=20; yStart+=20;
GLDebugDrawString(xStart,yStart,buf); GLDebugDrawString(xStart,yStart,buf);
sprintf(buf,"space to restart, mouse to pick/shoot");
yStart+=20;
GLDebugDrawString(xStart,yStart,buf);
resetPerspectiveProjection(); resetPerspectiveProjection();
glEnable(GL_LIGHTING); glEnable(GL_LIGHTING);
} }
@@ -233,7 +233,7 @@ void FractureDemo::showMessage()
void FractureDemo::displayCallback(void) { void FractureDemo::displayCallback(void) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderme(); renderme();
showMessage(); showMessage();
@@ -246,15 +246,6 @@ void FractureDemo::displayCallback(void) {
swapBuffers(); swapBuffers();
} }
void FractureDemo::keyboardCallback(unsigned char key, int x, int y)
{
if (key=='f')
{
} else
{
PlatformDemoApplication::keyboardCallback(key,x,y);
}
}
void FractureDemo::keyboardUpCallback(unsigned char key, int x, int y) void FractureDemo::keyboardUpCallback(unsigned char key, int x, int y)
{ {
@@ -265,21 +256,10 @@ void FractureDemo::keyboardUpCallback(unsigned char key, int x, int y)
} }
PlatformDemoApplication::keyboardUpCallback(key,x,y); PlatformDemoApplication::keyboardUpCallback(key,x,y);
} }
void FractureDemo::shootBox(const btVector3& destination) void FractureDemo::shootBox(const btVector3& destination)
{ {
@@ -305,12 +285,12 @@ void FractureDemo::shootBox(const btVector3& destination)
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btFractureBody* body = new btFractureBody(mass,0,m_shootBoxShape,localInertia,&mass,1,m_dynamicsWorld); btFractureBody* body = new btFractureBody(mass,0,m_shootBoxShape,localInertia,&mass,1,m_dynamicsWorld);
body->setWorldTransform(startTransform); body->setWorldTransform(startTransform);
m_dynamicsWorld->addRigidBody(body); m_dynamicsWorld->addRigidBody(body);
body->setLinearFactor(btVector3(1,1,1)); body->setLinearFactor(btVector3(1,1,1));
//body->setRestitution(1); //body->setRestitution(1);
@@ -324,14 +304,14 @@ void FractureDemo::shootBox(const btVector3& destination)
body->setAngularVelocity(btVector3(0,0,0)); body->setAngularVelocity(btVector3(0,0,0));
body->setCcdMotionThreshold(1.); body->setCcdMotionThreshold(1.);
body->setCcdSweptSphereRadius(0.2f); body->setCcdSweptSphereRadius(0.2f);
} }
} }
void FractureDemo::exitPhysics() void FractureDemo::exitPhysics()
{ {
@@ -359,17 +339,23 @@ void FractureDemo::exitPhysics()
delete shape; delete shape;
} }
m_collisionShapes.clear();
delete m_dynamicsWorld; delete m_dynamicsWorld;
m_dynamicsWorld=0;
delete m_solver; delete m_solver;
m_solver=0;
delete m_broadphase; delete m_broadphase;
m_broadphase=0;
delete m_dispatcher; delete m_dispatcher;
m_dispatcher=0;
delete m_collisionConfiguration; delete m_collisionConfiguration;
m_collisionConfiguration=0;
} }

View File

@@ -66,11 +66,11 @@ class FractureDemo : public PlatformDemoApplication
virtual void clientMoveAndDisplay(); virtual void clientMoveAndDisplay();
virtual void displayCallback(); virtual void displayCallback();
virtual void keyboardCallback(unsigned char key, int x, int y);
virtual void keyboardUpCallback(unsigned char key, int x, int y); virtual void keyboardUpCallback(unsigned char key, int x, int y);
virtual void clientResetScene();
static DemoApplication* Create() static DemoApplication* Create()
{ {
FractureDemo* demo = new FractureDemo; FractureDemo* demo = new FractureDemo;

View File

@@ -7,17 +7,19 @@
btFractureDynamicsWorld::btFractureDynamicsWorld ( btDispatcher* dispatcher,btBroadphaseInterface* pairCache,btConstraintSolver* constraintSolver,btCollisionConfiguration* collisionConfiguration) btFractureDynamicsWorld::btFractureDynamicsWorld ( btDispatcher* dispatcher,btBroadphaseInterface* pairCache,btConstraintSolver* constraintSolver,btCollisionConfiguration* collisionConfiguration)
:btDiscreteDynamicsWorld(dispatcher,pairCache,constraintSolver,collisionConfiguration), :btDiscreteDynamicsWorld(dispatcher,pairCache,constraintSolver,collisionConfiguration),
m_fracturingMode(false) m_fracturingMode(true)
{ {
} }
void btFractureDynamicsWorld::glueCallback(btScalar timeStep) void btFractureDynamicsWorld::glueCallback()
{ {
int numManifolds = getDispatcher()->getNumManifolds(); int numManifolds = getDispatcher()->getNumManifolds();
///first build the islands based on axis aligned bounding box overlap
btUnionFind unionFind; btUnionFind unionFind;
int index = 0; int index = 0;
@@ -61,7 +63,7 @@ void btFractureDynamicsWorld::glueCallback(btScalar timeStep)
btRigidBody* body0 = btRigidBody::upcast(colObj0); btRigidBody* body0 = btRigidBody::upcast(colObj0);
btRigidBody* body1 = btRigidBody::upcast(colObj1); btRigidBody* body1 = btRigidBody::upcast(colObj1);
if (!colObj0->isStaticOrKinematicObject() && !colObj1->isStaticOrKinematicObject()) if (!colObj0->isStaticOrKinematicObject() && !colObj1->isStaticOrKinematicObject())
{ {
unionFind.unite(tag0, tag1); unionFind.unite(tag0, tag1);
@@ -70,7 +72,7 @@ void btFractureDynamicsWorld::glueCallback(btScalar timeStep)
numElem = unionFind.getNumElements(); numElem = unionFind.getNumElements();
@@ -82,9 +84,9 @@ void btFractureDynamicsWorld::glueCallback(btScalar timeStep)
if (!collisionObject->isStaticOrKinematicObject()) if (!collisionObject->isStaticOrKinematicObject())
{ {
int tag = unionFind.find(index); int tag = unionFind.find(index);
collisionObject->setIslandTag( tag); collisionObject->setIslandTag( tag);
//Set the correct object offset in Collision Object Array //Set the correct object offset in Collision Object Array
#if STATIC_SIMULATION_ISLAND_OPTIMIZATION #if STATIC_SIMULATION_ISLAND_OPTIMIZATION
unionFind.getElement(index).m_sz = ai; unionFind.getElement(index).m_sz = ai;
@@ -102,7 +104,7 @@ void btFractureDynamicsWorld::glueCallback(btScalar timeStep)
btAlignedObjectArray<btCollisionObject*> removedObjects; btAlignedObjectArray<btCollisionObject*> removedObjects;
//update the sleeping state for bodies, if all are sleeping ///iterate over all islands
for ( startIslandIndex=0;startIslandIndex<numElem;startIslandIndex = endIslandIndex) for ( startIslandIndex=0;startIslandIndex<numElem;startIslandIndex = endIslandIndex)
{ {
int islandId = unionFind.getElement(startIslandIndex).m_id; int islandId = unionFind.getElement(startIslandIndex).m_id;
@@ -129,19 +131,25 @@ void btFractureDynamicsWorld::glueCallback(btScalar timeStep)
numObjects++; numObjects++;
} }
///Then for each island that contains at least two objects and one fracture object
if (fractureObjectIndex>=0 && numObjects>1) if (fractureObjectIndex>=0 && numObjects>1)
{ {
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
btFractureBody* fracObj = (btFractureBody*)getCollisionObjectArray()[fractureObjectIndex]; btFractureBody* fracObj = (btFractureBody*)getCollisionObjectArray()[fractureObjectIndex];
///glueing objects means creating a new compound and removing the old objects
///delay the removal of old objects to avoid array indexing problems
removedObjects.push_back(fracObj); removedObjects.push_back(fracObj);
m_fractureBodies.remove(fracObj); m_fractureBodies.remove(fracObj);
btAlignedObjectArray<btScalar> massArray; btAlignedObjectArray<btScalar> massArray;
btAlignedObjectArray<btVector3> oldImpulses;
btAlignedObjectArray<btVector3> oldCenterOfMassesWS;
oldImpulses.push_back(fracObj->getLinearVelocity()/1./fracObj->getInvMass());
oldCenterOfMassesWS.push_back(fracObj->getCenterOfMassPosition());
btScalar totalMass = 0.f; btScalar totalMass = 0.f;
@@ -169,7 +177,7 @@ void btFractureDynamicsWorld::glueCallback(btScalar timeStep)
for (idx=startIslandIndex;idx<endIslandIndex;idx++) for (idx=startIslandIndex;idx<endIslandIndex;idx++)
{ {
int i = unionFind.getElement(idx).m_sz; int i = unionFind.getElement(idx).m_sz;
if (i==fractureObjectIndex) if (i==fractureObjectIndex)
@@ -178,9 +186,15 @@ void btFractureDynamicsWorld::glueCallback(btScalar timeStep)
btCollisionObject* otherCollider = getCollisionObjectArray()[i]; btCollisionObject* otherCollider = getCollisionObjectArray()[i];
btRigidBody* otherObject = btRigidBody::upcast(otherCollider); btRigidBody* otherObject = btRigidBody::upcast(otherCollider);
//don't glue/merge with static objects right now, otherwise everything gets stuck to the ground
///todo: expose this as a callback
if (!otherObject || !otherObject->getInvMass()) if (!otherObject || !otherObject->getInvMass())
continue; continue;
oldImpulses.push_back(otherObject->getLinearVelocity()*(1.f/otherObject->getInvMass()));
oldCenterOfMassesWS.push_back(otherObject->getCenterOfMassPosition());
removedObjects.push_back(otherObject); removedObjects.push_back(otherObject);
m_fractureBodies.remove((btFractureBody*)otherObject); m_fractureBodies.remove((btFractureBody*)otherObject);
@@ -208,7 +222,7 @@ void btFractureDynamicsWorld::glueCallback(btScalar timeStep)
totalMass+=curMass; totalMass+=curMass;
} }
btTransform shift; btTransform shift;
shift.setIdentity(); shift.setIdentity();
@@ -221,12 +235,22 @@ void btFractureDynamicsWorld::glueCallback(btScalar timeStep)
btFractureBody* newBody = new btFractureBody(totalMass,0,newCompound,localInertia, &massArray[0], numChildren,this); btFractureBody* newBody = new btFractureBody(totalMass,0,newCompound,localInertia, &massArray[0], numChildren,this);
newBody->recomputeConnectivity(this); newBody->recomputeConnectivity(this);
newBody->setWorldTransform(fracObj->getWorldTransform()*shift); newBody->setWorldTransform(fracObj->getWorldTransform()*shift);
//now the linear/angular velocity is still zero, apply the impulses
for (int i=0;i<oldImpulses.size();i++)
{
btVector3 rel_pos = oldCenterOfMassesWS[i]-newBody->getCenterOfMassPosition();
const btVector3& imp = oldImpulses[i];
newBody->applyImpulse(imp, rel_pos);
}
addRigidBody(newBody); addRigidBody(newBody);
} }
} }
//remove the objects from the world at the very end, //remove the objects from the world at the very end,
@@ -255,24 +279,22 @@ struct btFracturePair
void btFractureDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo) void btFractureDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
{ {
//todo: add some logic // todo: after fracture we should run the solver again for better realism
// for example
// save all velocities // save all velocities and if one or more objects fracture:
// 1) that if a fracture object break // 1) revert all velocties
// 2) revert all velocties // 2) apply impulses for the fracture bodies at the contact locations
// 3) apply impulses for the fracture bodies at the contact locations // 3)and run the constaint solver again
// 4)and run the constaint solver again
btDiscreteDynamicsWorld::solveConstraints(solverInfo); btDiscreteDynamicsWorld::solveConstraints(solverInfo);
fractureCallback(solverInfo.m_timeStep); fractureCallback();
} }
btFractureBody* btFractureDynamicsWorld::addNewBody(const btTransform& oldTransform,btScalar* masses, btCompoundShape* oldCompound)
void btFractureDynamicsWorld::addNewBody(const btTransform& oldTransform,btScalar* masses, btCompoundShape* oldCompound)
{ {
int i; int i;
btTransform shift; btTransform shift;
shift.setIdentity(); shift.setIdentity();
btVector3 localInertia; btVector3 localInertia;
@@ -284,10 +306,11 @@ void btFractureDynamicsWorld::addNewBody(const btTransform& oldTransform,btScala
btFractureBody* newBody = new btFractureBody(totalMass,0,newCompound,localInertia, masses,newCompound->getNumChildShapes(), this); btFractureBody* newBody = new btFractureBody(totalMass,0,newCompound,localInertia, masses,newCompound->getNumChildShapes(), this);
newBody->recomputeConnectivity(this); newBody->recomputeConnectivity(this);
newBody->setCollisionFlags(newBody->getCollisionFlags()|btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK); newBody->setCollisionFlags(newBody->getCollisionFlags()|btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);
newBody->setWorldTransform(oldTransform*shift); newBody->setWorldTransform(oldTransform*shift);
addRigidBody(newBody); addRigidBody(newBody);
return newBody;
} }
void btFractureDynamicsWorld::addRigidBody(btRigidBody* body) void btFractureDynamicsWorld::addRigidBody(btRigidBody* body)
@@ -351,7 +374,7 @@ void btFractureDynamicsWorld::breakDisconnectedParts( btFractureBody* fracObj)
} }
} }
numElem = unionFind.getNumElements(); numElem = unionFind.getNumElements();
index=0; index=0;
for (int ai=0;ai<numChildren;ai++) for (int ai=0;ai<numChildren;ai++)
{ {
@@ -398,30 +421,34 @@ void btFractureDynamicsWorld::breakDisconnectedParts( btFractureBody* fracObj)
} }
if (numShapes) if (numShapes)
{ {
addNewBody(fracObj->getWorldTransform(),&masses[0],newCompound); btFractureBody* newBody = addNewBody(fracObj->getWorldTransform(),&masses[0],newCompound);
newBody->setLinearVelocity(fracObj->getLinearVelocity());
newBody->setAngularVelocity(fracObj->getAngularVelocity());
numIslands++; numIslands++;
} }
} }
removeRigidBody(fracObj);//should it also be removed from the array? removeRigidBody(fracObj);//should it also be removed from the array?
} }
#include <stdio.h>
void btFractureDynamicsWorld::fractureCallback( btScalar timeStep) void btFractureDynamicsWorld::fractureCallback( )
{ {
btAlignedObjectArray<btFracturePair> sFracturePairs; btAlignedObjectArray<btFracturePair> sFracturePairs;
if (!m_fracturingMode) if (!m_fracturingMode)
{ {
glueCallback(timeStep); glueCallback();
return; return;
} }
@@ -429,28 +456,31 @@ void btFractureDynamicsWorld::fractureCallback( btScalar timeStep)
sFracturePairs.clear(); sFracturePairs.clear();
for (int i=0;i<numManifolds;i++) for (int i=0;i<numManifolds;i++)
{ {
btPersistentManifold* manifold = getDispatcher()->getManifoldByIndexInternal(i); btPersistentManifold* manifold = getDispatcher()->getManifoldByIndexInternal(i);
if (!manifold->getNumContacts()) if (!manifold->getNumContacts())
continue; continue;
btScalar totalImpact = 0.f; btScalar totalImpact = 0.f;
for (int p=0;p<manifold->getNumContacts();p++) for (int p=0;p<manifold->getNumContacts();p++)
{ {
totalImpact += manifold->getContactPoint(p).m_appliedImpulse; totalImpact += manifold->getContactPoint(p).m_appliedImpulse;
} }
// printf("totalImpact=%f\n",totalImpact);
static float maxImpact = 0; static float maxImpact = 0;
if (totalImpact>maxImpact) if (totalImpact>maxImpact)
maxImpact = totalImpact; maxImpact = totalImpact;
//some threshold otherwise resting contact would break objects after a while //some threshold otherwise resting contact would break objects after a while
if (totalImpact < 10) if (totalImpact < 40.f)
continue; continue;
// printf("strong impact\n"); // printf("strong impact\n");
//@todo: add better logic to decide what parts to fracture //@todo: add better logic to decide what parts to fracture
@@ -479,8 +509,8 @@ void btFractureDynamicsWorld::fractureCallback( btScalar timeStep)
btCollisionObject* colOb = (btCollisionObject*)manifold->getBody1(); btCollisionObject* colOb = (btCollisionObject*)manifold->getBody1();
btRigidBody* otherOb = btRigidBody::upcast(colOb); btRigidBody* otherOb = btRigidBody::upcast(colOb);
// if (!otherOb->getInvMass()) // if (!otherOb->getInvMass())
// continue; // continue;
int pi=-1; int pi=-1;
@@ -504,16 +534,16 @@ void btFractureDynamicsWorld::fractureCallback( btScalar timeStep)
sFracturePairs[pi].m_contactManifolds.push_back(manifold); sFracturePairs[pi].m_contactManifolds.push_back(manifold);
} }
} }
if (f1 < m_fractureBodies.size()) if (f1 < m_fractureBodies.size())
{ {
int j=f1; int j=f1;
{ {
btCollisionObject* colOb = (btCollisionObject*)manifold->getBody0(); btCollisionObject* colOb = (btCollisionObject*)manifold->getBody0();
btRigidBody* otherOb = btRigidBody::upcast(colOb); btRigidBody* otherOb = btRigidBody::upcast(colOb);
// if (!otherOb->getInvMass()) // if (!otherOb->getInvMass())
// continue; // continue;
int pi=-1; int pi=-1;
@@ -549,7 +579,7 @@ void btFractureDynamicsWorld::fractureCallback( btScalar timeStep)
{ {
// printf("fracturing\n"); // printf("fracturing\n");
for (int i=0;i<sFracturePairs.size();i++) for (int i=0;i<sFracturePairs.size();i++)
{ {
@@ -559,7 +589,7 @@ void btFractureDynamicsWorld::fractureCallback( btScalar timeStep)
//compute connectivity of connected child shapes //compute connectivity of connected child shapes
if (sFracturePairs[i].m_fracObj->getCollisionShape()->isCompound()) if (sFracturePairs[i].m_fracObj->getCollisionShape()->isCompound())
{ {
btTransform tr; btTransform tr;
@@ -585,7 +615,7 @@ void btFractureDynamicsWorld::fractureCallback( btScalar timeStep)
{ {
btConnection& connection = sFracturePairs[i].m_fracObj->m_connections[f]; btConnection& connection = sFracturePairs[i].m_fracObj->m_connections[f];
if ( (connection.m_childIndex0 == pt.m_index0) || if ( (connection.m_childIndex0 == pt.m_index0) ||
(connection.m_childIndex1 == pt.m_index0) (connection.m_childIndex1 == pt.m_index0)
) )
{ {
connection.m_strength -= pt.m_appliedImpulse; connection.m_strength -= pt.m_appliedImpulse;
@@ -603,7 +633,7 @@ void btFractureDynamicsWorld::fractureCallback( btScalar timeStep)
{ {
btConnection& connection = sFracturePairs[i].m_fracObj->m_connections[f]; btConnection& connection = sFracturePairs[i].m_fracObj->m_connections[f];
if ( (connection.m_childIndex0 == pt.m_index1) || if ( (connection.m_childIndex0 == pt.m_index1) ||
(connection.m_childIndex1 == pt.m_index1) (connection.m_childIndex1 == pt.m_index1)
) )
{ {
connection.m_strength -= pt.m_appliedImpulse; connection.m_strength -= pt.m_appliedImpulse;

View File

@@ -17,11 +17,7 @@ class btFractureDynamicsWorld : public btDiscreteDynamicsWorld
bool m_fracturingMode; bool m_fracturingMode;
void glueCallback(btScalar timeStep); btFractureBody* addNewBody(const btTransform& oldTransform,btScalar* masses, btCompoundShape* oldCompound);
void fractureCallback( btScalar timeStep);
void addNewBody(const btTransform& oldTransform,btScalar* masses, btCompoundShape* oldCompound);
void breakDisconnectedParts( btFractureBody* fracObj); void breakDisconnectedParts( btFractureBody* fracObj);
@@ -42,6 +38,13 @@ public:
} }
bool getFractureMode() const { return m_fracturingMode;} bool getFractureMode() const { return m_fracturingMode;}
///normally those callbacks are called internally by the 'solveConstraints'
void glueCallback();
///normally those callbacks are called internally by the 'solveConstraints'
void fractureCallback();
}; };
#endif //_BT_FRACTURE_DYNAMICS_WORLD_H #endif //_BT_FRACTURE_DYNAMICS_WORLD_H

View File

@@ -1115,12 +1115,13 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(
//should traverse the contacts random order... //should traverse the contacts random order...
int iteration; int iteration;
{ {
solveGroupCacheFriendlySplitImpulseIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer,stackAlloc);
for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++) for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
{ {
solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer,stackAlloc); solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer,stackAlloc);
} }
solveGroupCacheFriendlySplitImpulseIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer,stackAlloc);
} }
return 0.f; return 0.f;
} }

View File

@@ -236,7 +236,10 @@ public:
btScalar getTargetAngMotorVelocity() { return m_targetAngMotorVelocity; } btScalar getTargetAngMotorVelocity() { return m_targetAngMotorVelocity; }
void setMaxAngMotorForce(btScalar maxAngMotorForce) { m_maxAngMotorForce = maxAngMotorForce; } void setMaxAngMotorForce(btScalar maxAngMotorForce) { m_maxAngMotorForce = maxAngMotorForce; }
btScalar getMaxAngMotorForce() { return m_maxAngMotorForce; } btScalar getMaxAngMotorForce() { return m_maxAngMotorForce; }
btScalar getLinearPos() { return m_linPos; }
btScalar getLinearPos() const { return m_linPos; }
btScalar getAngularPos() const { return m_angPos; }
// access for ODE solver // access for ODE solver