/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "BU_EdgeEdge.h" #include "BU_Screwing.h" #include #include //#include "BU_IntervalArithmeticPolynomialSolver.h" #include "BU_AlgebraicPolynomialSolver.h" #define USE_ALGEBRAIC #ifdef USE_ALGEBRAIC #define BU_Polynomial BU_AlgebraicPolynomialSolver #else #define BU_Polynomial BU_IntervalArithmeticPolynomialSolver #endif BU_EdgeEdge::BU_EdgeEdge() { } bool BU_EdgeEdge::GetTimeOfImpact( const BU_Screwing& screwAB, const btPoint3& a,//edge in object A const btVector3& u, const btPoint3& c,//edge in object B const btVector3& v, btScalar &minTime, btScalar &lambda1, btScalar& mu1 ) { bool hit=false; btScalar lambda; btScalar mu; const btScalar w=screwAB.GetW(); const btScalar s=screwAB.GetS(); if (btFuzzyZero(s) && btFuzzyZero(w)) { //no motion, no collision return false; } if (btFuzzyZero(w) ) { //pure translation W=0, S <> 0 //no trig, f(t)=t btScalar det = u.y()*v.x()-u.x()*v.y(); if (!btFuzzyZero(det)) { lambda = (a.x()*v.y() - c.x() * v.y() - v.x() * a.y() + v.x() * c.y()) / det; mu = (u.y() * a.x() - u.y() * c.x() - u.x() * a.y() + u.x() * c.y()) / det; if (mu >=0 && mu <= 1 && lambda >= 0 && lambda <= 1) { // single potential collision is btScalar t = (c.z()-a.z()+mu*v.z()-lambda*u.z())/s; //if this is on the edge, and time t within [0..1] report hit if (t>=0 && t <= minTime) { hit = true; lambda1 = lambda; mu1 = mu; minTime=t; } } } else { //parallel case, not yet } } else { if (btFuzzyZero(s) ) { if (btFuzzyZero(u.z()) ) { if (btFuzzyZero(v.z()) ) { //u.z()=0,v.z()=0 if (btFuzzyZero(a.z()-c.z())) { //printf("NOT YET planar problem, 4 vertex=edge cases\n"); } else { //printf("parallel but distinct planes, no collision\n"); return false; } } else { btScalar mu = (a.z() - c.z())/v.z(); if (0<=mu && mu <= 1) { // printf("NOT YET//u.z()=0,v.z()<>0\n"); } else { return false; } } } else { //u.z()<>0 if (btFuzzyZero(v.z()) ) { //printf("u.z()<>0,v.z()=0\n"); lambda = (c.z() - a.z())/u.z(); if (0<=lambda && lambda <= 1) { //printf("u.z()<>0,v.z()=0\n"); btPoint3 rotPt(a.x()+lambda * u.x(), a.y()+lambda * u.y(),0.f); btScalar r2 = rotPt.length2();//px*px + py*py; //either y=a*x+b, or x = a*x+b... //depends on whether value v.x() is zero or not btScalar aa; btScalar bb; if (btFuzzyZero(v.x())) { aa = v.x()/v.y(); bb= c.x()+ (-c.y() /v.y()) *v.x(); } else { //line is c+mu*v; //x = c.x()+mu*v.x(); //mu = ((x-c.x())/v.x()); //y = c.y()+((x-c.x())/v.x())*v.y(); //y = c.y()+ (-c.x() /v.x()) *v.y() + (x /v.x()) *v.y(); //y = a*x+b,where a = v.y()/v.x(), b= c.y()+ (-c.x() /v.x()) *v.y(); aa = v.y()/v.x(); bb= c.y()+ (-c.x() /v.x()) *v.y(); } btScalar disc = aa*aa*r2 + r2 - bb*bb; if (disc <0) { //edge doesn't intersect the circle (motion of the vertex) return false; } btScalar rad = btSqrt(r2); if (btFuzzyZero(disc)) { btPoint3 intersectPt; btScalar mu; //intersectionPoint edge with circle; if (btFuzzyZero(v.x())) { intersectPt.setY( (-2*aa*bb)/(2*(aa*aa+1))); intersectPt.setX( aa*intersectPt.y()+bb ); mu = ((intersectPt.y()-c.y())/v.y()); } else { intersectPt.setX((-2*aa*bb)/(2*(aa*aa+1))); intersectPt.setY(aa*intersectPt.x()+bb); mu = ((intersectPt.getX()-c.getX())/v.getX()); } if (0 <= mu && mu <= 1) { hit = Calc2DRotationPointPoint(rotPt,rad,screwAB.GetW(),intersectPt,minTime); } //only one solution } else { //two points... //intersectionPoint edge with circle; btPoint3 intersectPt; //intersectionPoint edge with circle; if (btFuzzyZero(v.x())) { btScalar mu; intersectPt.setY((-2.f*aa*bb+2.f*btSqrt(disc))/(2.f*(aa*aa+1.f))); intersectPt.setX(aa*intersectPt.y()+bb); mu = ((intersectPt.getY()-c.getY())/v.getY()); if (0.f <= mu && mu <= 1.f) { hit = Calc2DRotationPointPoint(rotPt,rad,screwAB.GetW(),intersectPt,minTime); } intersectPt.setY((-2.f*aa*bb-2.f*btSqrt(disc))/(2.f*(aa*aa+1.f))); intersectPt.setX(aa*intersectPt.y()+bb); mu = ((intersectPt.getY()-c.getY())/v.getY()); if (0 <= mu && mu <= 1) { hit = hit || Calc2DRotationPointPoint(rotPt,rad,screwAB.GetW(),intersectPt,minTime); } } else { btScalar mu; intersectPt.setX((-2.f*aa*bb+2.f*btSqrt(disc))/(2*(aa*aa+1.f))); intersectPt.setY(aa*intersectPt.x()+bb); mu = ((intersectPt.getX()-c.getX())/v.getX()); if (0 <= mu && mu <= 1) { hit = Calc2DRotationPointPoint(rotPt,rad,screwAB.GetW(),intersectPt,minTime); } intersectPt.setX((-2.f*aa*bb-2.f*btSqrt(disc))/(2.f*(aa*aa+1.f))); intersectPt.setY(aa*intersectPt.x()+bb); mu = ((intersectPt.getX()-c.getX())/v.getX()); if (0.f <= mu && mu <= 1.f) { hit = hit || Calc2DRotationPointPoint(rotPt,rad,screwAB.GetW(),intersectPt,minTime); } } } //int k=0; } else { return false; } } else { //u.z()<>0,v.z()<>0 //printf("general case with s=0\n"); hit = GetTimeOfImpactbteralCase(screwAB,a,u,c,v,minTime,lambda,mu); if (hit) { lambda1 = lambda; mu1 = mu; } } } } else { //printf("general case, W<>0,S<>0\n"); hit = GetTimeOfImpactbteralCase(screwAB,a,u,c,v,minTime,lambda,mu); if (hit) { lambda1 = lambda; mu1 = mu; } } //W <> 0,pure rotation } return hit; } bool BU_EdgeEdge::GetTimeOfImpactbteralCase( const BU_Screwing& screwAB, const btPoint3& a,//edge in object A const btVector3& u, const btPoint3& c,//edge in object B const btVector3& v, btScalar &minTime, btScalar &lambda, btScalar& mu ) { bool hit = false; btScalar coefs[4]={0.f,0.f,0.f,0.f}; BU_Polynomial polynomialSolver; int numroots = 0; //btScalar eps=1e-15f; //btScalar eps2=1e-20f; btScalar s=screwAB.GetS(); btScalar w = screwAB.GetW(); btScalar ax = a.x(); btScalar ay = a.y(); btScalar az = a.z(); btScalar cx = c.x(); btScalar cy = c.y(); btScalar cz = c.z(); btScalar vx = v.x(); btScalar vy = v.y(); btScalar vz = v.z(); btScalar ux = u.x(); btScalar uy = u.y(); btScalar uz = u.z(); if (!btFuzzyZero(v.z())) { //Maple Autogenerated C code btScalar t1,t2,t3,t4,t7,t8,t10; btScalar t13,t14,t15,t16,t17,t18,t19,t20; btScalar t21,t22,t23,t24,t25,t26,t27,t28,t29,t30; btScalar t31,t32,t33,t34,t35,t36,t39,t40; btScalar t41,t43,t48; btScalar t63; btScalar aa,bb,cc,dd;//the coefficients t1 = v.y()*s; t2 = t1*u.x(); t3 = v.x()*s; t4 = t3*u.y(); t7 = btTan(w/2.0f); t8 = 1.0f/t7; t10 = 1.0f/v.z(); aa = (t2-t4)*t8*t10; t13 = a.x()*t7; t14 = u.z()*v.y(); t15 = t13*t14; t16 = u.x()*v.z(); t17 = a.y()*t7; t18 = t16*t17; t19 = u.y()*v.z(); t20 = t13*t19; t21 = v.y()*u.x(); t22 = c.z()*t7; t23 = t21*t22; t24 = v.x()*a.z(); t25 = t7*u.y(); t26 = t24*t25; t27 = c.y()*t7; t28 = t16*t27; t29 = a.z()*t7; t30 = t21*t29; t31 = u.z()*v.x(); t32 = t31*t27; t33 = t31*t17; t34 = c.x()*t7; t35 = t34*t19; t36 = t34*t14; t39 = v.x()*c.z(); t40 = t39*t25; t41 = 2.0f*t1*u.y()-t15+t18-t20-t23-t26+t28+t30+t32+t33-t35-t36+2.0f*t3*u.x()+t40; bb = t41*t8*t10; t43 = t7*u.x(); t48 = u.y()*v.y(); cc = (-2.0f*t39*t43+2.0f*t24*t43+t4-2.0f*t48*t22+2.0f*t34*t16-2.0f*t31*t13-t2 -2.0f*t17*t14+2.0f*t19*t27+2.0f*t48*t29)*t8*t10; t63 = -t36+t26+t32-t40+t23+t35-t20+t18-t28-t33+t15-t30; dd = t63*t8*t10; coefs[0]=aa; coefs[1]=bb; coefs[2]=cc; coefs[3]=dd; } else { btScalar t1,t2,t3,t4,t7,t8,t10; btScalar t13,t14,t15,t16,t17,t18,t19,t20; btScalar t21,t22,t23,t24,t25,t26,t27,t28,t29,t30; btScalar t31,t32,t33,t34,t35,t36,t37,t38,t57; btScalar p1,p2,p3,p4; t1 = uy*s; t2 = t1*vx; t3 = ux*s; t4 = t3*vy; t7 = btTan(w/2.0f); t8 = 1/t7; t10 = 1/uz; t13 = ux*az; t14 = t7*vy; t15 = t13*t14; t16 = ax*t7; t17 = uy*vz; t18 = t16*t17; t19 = cx*t7; t20 = t19*t17; t21 = vy*uz; t22 = t19*t21; t23 = ay*t7; t24 = vx*uz; t25 = t23*t24; t26 = uy*cz; t27 = t7*vx; t28 = t26*t27; t29 = t16*t21; t30 = cy*t7; t31 = ux*vz; t32 = t30*t31; t33 = ux*cz; t34 = t33*t14; t35 = t23*t31; t36 = t30*t24; t37 = uy*az; t38 = t37*t27; p4 = (-t2+t4)*t8*t10; p3 = 2.0f*t1*vy+t15-t18-t20-t22+t25+t28-t29+t32-t34+t35+t36-t38+2.0f*t3*vx; p2 = -2.0f*t33*t27-2.0f*t26*t14-2.0f*t23*t21+2.0f*t37*t14+2.0f*t30*t17+2.0f*t13 *t27+t2-t4+2.0f*t19*t31-2.0f*t16*t24; t57 = -t22+t29+t36-t25-t32+t34+t35-t28-t15+t20-t18+t38; p1 = t57*t8*t10; coefs[0] = p4; coefs[1] = p3; coefs[2] = p2; coefs[1] = p1; } numroots = polynomialSolver.Solve3Cubic(coefs[0],coefs[1],coefs[2],coefs[3]); for (int i=0;i=0.f && t= -0.001); //if (hit) { // minTime = 0; //calculate the time of impact, using the fact of //toi = alpha / screwAB.getW(); // cos (alpha) = adjacent/hypothenuse; //adjacent = dotproduct(ipedge,point); //hypothenuse = sqrt(r2); btScalar adjacent = intersectPt.dot(rotPt)/rotRadius; btScalar hypo = rotRadius; btScalar alpha = btAcos(adjacent/hypo); btScalar t = alpha / rotW; if (t >= 0 && t < minTime) { hit = true; minTime = t; } else { hit = false; } } return hit; } bool BU_EdgeEdge::GetTimeOfImpactVertexEdge( const BU_Screwing& screwAB, const btPoint3& a,//edge in object A const btVector3& u, const btPoint3& c,//edge in object B const btVector3& v, btScalar &minTime, btScalar &lamda, btScalar& mu ) { return false; }