#include "SpuGatheringCollisionTask.h" #include "SpuDoubleBuffer.h" #include "../SpuCollisionTaskProcess.h" #include "../SpuGatheringCollisionDispatcher.h" //for SPU_BATCHSIZE_BROADPHASE_PAIRS #include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" #include "SpuContactManifoldCollisionAlgorithm.h" #include "BulletCollision/CollisionDispatch/btCollisionObject.h" #include "SpuContactResult.h" #include "BulletCollision/CollisionShapes/btOptimizedBvh.h" #include "BulletCollision/CollisionShapes/btTriangleIndexVertexArray.h" #include "BulletCollision/CollisionShapes/btSphereShape.h" #include "BulletCollision/CollisionShapes/btConvexShape.h" #include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" #include "BulletCollision/CollisionShapes/btConvexHullShape.h" #include "SpuMinkowskiPenetrationDepthSolver.h" #include "SpuGjkPairDetector.h" #include "SpuVoronoiSimplexSolver.h" #include "SpuLocalSupport.h" //definition of SpuConvexPolyhedronVertexData #ifdef WIN32 #define spu_printf printf #include #endif #define MAX_SHAPE_SIZE 256 //int gNumConvexPoints0=0; ///Make sure no destructors are called on this memory struct CollisionTask_LocalStoreMemory { DoubleBuffer g_workUnitTaskBuffers; btBroadphasePair gBroadphasePairs[SPU_BATCHSIZE_BROADPHASE_PAIRS]; //SpuContactManifoldCollisionAlgorithm gSpuContactManifoldAlgo; ATTRIBUTE_ALIGNED16(char gSpuContactManifoldAlgo[sizeof(SpuContactManifoldCollisionAlgorithm)+128]); SpuContactManifoldCollisionAlgorithm* getlocalCollisionAlgorithm() { return (SpuContactManifoldCollisionAlgorithm*)&gSpuContactManifoldAlgo; } btPersistentManifold gPersistentManifold; btBroadphaseProxy gProxy0; btBroadphaseProxy gProxy1; btCollisionObject gColObj0; btCollisionObject gColObj1; static const int maxShapeSize = MAX_SHAPE_SIZE;//todo: make some compile-time assert that this is value is larger then sizeof(btCollisionShape) ATTRIBUTE_ALIGNED16(char gCollisionShape0[maxShapeSize]); ATTRIBUTE_ALIGNED16(char gCollisionShape1[maxShapeSize]); ATTRIBUTE_ALIGNED16(int spuIndices[16]); ATTRIBUTE_ALIGNED16(btOptimizedBvh gOptimizedBvh); ATTRIBUTE_ALIGNED16(btTriangleIndexVertexArray gTriangleMeshInterface); ///only a single mesh part for now, we can add support for multiple parts, but quantized trees don't support this at the moment ATTRIBUTE_ALIGNED16(btIndexedMesh gIndexMesh); #define MAX_SPU_SUBTREE_HEADERS 32 //1024 ATTRIBUTE_ALIGNED16(btBvhSubtreeInfo gSubtreeHeaders[MAX_SPU_SUBTREE_HEADERS]); ATTRIBUTE_ALIGNED16(btQuantizedBvhNode gSubtreeNodes[MAX_SUBTREE_SIZE_IN_BYTES/sizeof(btQuantizedBvhNode)]); SpuConvexPolyhedronVertexData convexVertexData; }; void* createCollisionLocalStoreMemory() { return new CollisionTask_LocalStoreMemory; }; void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts); inline bool spuTestQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1,const unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2) { bool overlap = true; overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? false : overlap; overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? false : overlap; overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? false : overlap; return overlap; } void spuWalkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,const btQuantizedBvhNode* rootNode,int startNodeIndex,int endNodeIndex) { int curIndex = startNodeIndex; int walkIterations = 0; int subTreeSize = endNodeIndex - startNodeIndex; int escapeIndex; bool aabbOverlap, isLeafNode; while (curIndex < endNodeIndex) { //catch bugs in tree data assert (walkIterations < subTreeSize); walkIterations++; aabbOverlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); isLeafNode = rootNode->isLeafNode(); if (isLeafNode && aabbOverlap) { //printf("overlap with node %d\n",rootNode->getTriangleIndex()); nodeCallback->processNode(0,rootNode->getTriangleIndex()); // spu_printf("SPU: overlap detected with triangleIndex:%d\n",rootNode->getTriangleIndex()); } if (aabbOverlap || isLeafNode) { rootNode++; curIndex++; } else { escapeIndex = rootNode->getEscapeIndex(); rootNode += escapeIndex; curIndex += escapeIndex; } } } void small_cache_read(void* buffer, uint64_t ea, size_t size) { #if USE_SOFTWARE_CACHE // Check for alignment requirements. We need to make sure the entire request fits within one cache line, // so the first and last bytes should fall on the same cache line btAssert((ea & ~SPE_CACHELINE_MASK) == ((ea + size - 1) & ~SPE_CACHELINE_MASK)); void* ls = spe_cache_read(ea); memcpy(buffer, ls, size); #else cellDmaLargeGet(buffer, ea, size, DMA_TAG(16), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(16)); #endif } class spuNodeCallback : public btNodeOverlapCallback { SpuCollisionPairInput* m_wuInput; SpuContactResult& m_spuContacts; CollisionTask_LocalStoreMemory* m_lsMemPtr; ATTRIBUTE_ALIGNED16(btVector3 spuTriangleVertices[3]); ATTRIBUTE_ALIGNED16(btScalar spuUnscaledVertex[4]); ATTRIBUTE_ALIGNED16(int spuIndices[16]); public: spuNodeCallback(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr,SpuContactResult& spuContacts) : m_wuInput(wuInput), m_lsMemPtr(lsMemPtr), m_spuContacts(spuContacts) { } virtual void processNode(int subPart, int triangleIndex) { ///Create a triangle on the stack, call process collision, with GJK ///DMA the vertices, can benefit from software caching // spu_printf("processNode with triangleIndex %d\n",triangleIndex); int* indexBasePtr = (int*)(m_lsMemPtr->gIndexMesh.m_triangleIndexBase+triangleIndex*m_lsMemPtr->gIndexMesh.m_triangleIndexStride); ///DMA the indices small_cache_read(&m_lsMemPtr->spuIndices[0],(uint64_t)&indexBasePtr[0],sizeof(int)); small_cache_read(&m_lsMemPtr->spuIndices[1],(uint64_t)&indexBasePtr[1],sizeof(int)); small_cache_read(&m_lsMemPtr->spuIndices[2],(uint64_t)&indexBasePtr[2],sizeof(int)); // spu_printf("SPU index0=%d ,",spuIndices[0]); // spu_printf("SPU index1=%d ,",spuIndices[1]); // spu_printf("SPU index2=%d ,",spuIndices[2]); // spu_printf("SPU: indexBasePtr=%llx\n",indexBasePtr); const btVector3& meshScaling = m_lsMemPtr->gTriangleMeshInterface.getScaling(); for (int j=2;j>=0;j--) { int graphicsindex = m_lsMemPtr->spuIndices[j]; // spu_printf("SPU index=%d ,",graphicsindex); btScalar* graphicsbasePtr = (btScalar*)(m_lsMemPtr->gIndexMesh.m_vertexBase+graphicsindex*m_lsMemPtr->gIndexMesh.m_vertexStride); // spu_printf("SPU graphicsbasePtr=%llx\n",graphicsbasePtr); ///handle un-aligned vertices... //another DMA for each vertex small_cache_read(&spuUnscaledVertex[0],(uint64_t)&graphicsbasePtr[0],sizeof(btScalar)); small_cache_read(&spuUnscaledVertex[1],(uint64_t)&graphicsbasePtr[1],sizeof(btScalar)); small_cache_read(&spuUnscaledVertex[2],(uint64_t)&graphicsbasePtr[2],sizeof(btScalar)); spuTriangleVertices[j] = btVector3( spuUnscaledVertex[0]*meshScaling.getX(), spuUnscaledVertex[1]*meshScaling.getY(), spuUnscaledVertex[2]*meshScaling.getZ()); // spu_printf("SPU:triangle vertices:%f,%f,%f\n",spuTriangleVertices[j].x(),spuTriangleVertices[j].y(),spuTriangleVertices[j].z()); } //btTriangleShape tmpTriangleShape(spuTriangleVertices[0],spuTriangleVertices[1],spuTriangleVertices[2]); SpuCollisionPairInput triangleConcaveInput(*m_wuInput); triangleConcaveInput.m_spuCollisionShapes[1] = &spuTriangleVertices[0]; triangleConcaveInput.m_shapeType1 = TRIANGLE_SHAPE_PROXYTYPE; m_spuContacts.setShapeIdentifiers(-1,-1,subPart,triangleIndex); // m_spuContacts.flush(); ProcessSpuConvexConvexCollision(&triangleConcaveInput, m_lsMemPtr,m_spuContacts); ///this flush should be automatic // m_spuContacts.flush(); } }; //////////////////////// /// Convex versus Concave triangle mesh collision detection (handles concave triangle mesh versus sphere, box, cylinder, triangle, cone, convex polyhedron etc) /////////////////// void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts) { //order: first collision shape is convex, second concave. m_isSwapped is true, if the original order was opposite int sb = sizeof(btBvhTriangleMeshShape); btAssert(sizeof(btBvhTriangleMeshShape) < MAX_SHAPE_SIZE); btBvhTriangleMeshShape* trimeshShape = (btBvhTriangleMeshShape*)wuInput->m_spuCollisionShapes[1]; //need the mesh interface, for access to triangle vertices { int dmaSize = sizeof(btTriangleIndexVertexArray); uint64_t dmaPpuAddress2 = reinterpret_cast(trimeshShape->getMeshInterface()); // spu_printf("trimeshShape->getMeshInterface() == %llx\n",dmaPpuAddress2); cellDmaGet(&lsMemPtr->gTriangleMeshInterface, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); } ///now DMA over the BVH { int dmaSize = sizeof(btOptimizedBvh); uint64_t dmaPpuAddress2 = reinterpret_cast(trimeshShape->getOptimizedBvh()); //spu_printf("trimeshShape->getOptimizedBvh() == %llx\n",dmaPpuAddress2); cellDmaGet(&lsMemPtr->gOptimizedBvh, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); } btVector3 aabbMin(-1,-400,-1); btVector3 aabbMax(1,400,1); //recalc aabbs btTransform convexInTriangleSpace; convexInTriangleSpace = wuInput->m_worldTransform1.inverse() * wuInput->m_worldTransform0; btConvexShape* convexShape = (btConvexShape*)wuInput->m_spuCollisionShapes[0]; //calculate the aabb, given the types... switch (wuInput->m_shapeType0) { case CYLINDER_SHAPE_PROXYTYPE: case BOX_SHAPE_PROXYTYPE: { float margin=convexShape->getMarginNV(); btVector3 halfExtents = convexShape->getImplicitShapeDimensions(); btTransform& t = wuInput->m_worldTransform0; btMatrix3x3 abs_b = t.getBasis().absolute(); btPoint3 center = t.getOrigin(); btVector3 extent = btVector3(abs_b[0].dot(halfExtents), abs_b[1].dot(halfExtents), abs_b[2].dot(halfExtents)); extent += btVector3(margin,margin,margin); aabbMin = center - extent; aabbMax = center + extent; break; } case CAPSULE_SHAPE_PROXYTYPE: { float margin=convexShape->getMarginNV(); btVector3 halfExtents = convexShape->getImplicitShapeDimensions(); //add the radius to y-axis to get full height btScalar radius = halfExtents[0]; halfExtents[1] += radius; btTransform& t = wuInput->m_worldTransform0; btMatrix3x3 abs_b = t.getBasis().absolute(); btPoint3 center = t.getOrigin(); btVector3 extent = btVector3(abs_b[0].dot(halfExtents), abs_b[1].dot(halfExtents), abs_b[2].dot(halfExtents)); extent += btVector3(margin,margin,margin); aabbMin = center - extent; aabbMax = center + extent; break; } case SPHERE_SHAPE_PROXYTYPE: { float radius = convexShape->getImplicitShapeDimensions().getX();// * convexShape->getLocalScaling().getX(); float margin = radius + convexShape->getMarginNV(); btTransform& t = wuInput->m_worldTransform0; const btVector3& center = t.getOrigin(); btVector3 extent(margin,margin,margin); aabbMin = center - extent; aabbMax = center + extent; break; } case CONVEX_HULL_SHAPE_PROXYTYPE: { int dmaSize = sizeof(btConvexHullShape); uint64_t dmaPpuAddress2 = wuInput->m_collisionShapes[0]; ATTRIBUTE_ALIGNED16(char convexHullShape0[sizeof(btConvexHullShape)]); cellDmaGet(&convexHullShape0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); btConvexHullShape* localPtr = (btConvexHullShape*)&convexHullShape0; btTransform& t = wuInput->m_worldTransform0; btScalar margin = convexShape->getMarginNV(); localPtr->getNonvirtualAabb(t,aabbMin,aabbMax,margin); //spu_printf("SPU convex aabbMin=%f,%f,%f=\n",aabbMin.getX(),aabbMin.getY(),aabbMin.getZ()); //spu_printf("SPU convex aabbMax=%f,%f,%f=\n",aabbMax.getX(),aabbMax.getY(),aabbMax.getZ()); break; } default: spu_printf("SPU: unsupported shapetype %d in AABB calculation\n"); }; //CollisionShape* triangleShape = static_cast(triBody->m_collisionShape); //convexShape->getAabb(convexInTriangleSpace,m_aabbMin,m_aabbMax); // btScalar extraMargin = collisionMarginTriangle; // btVector3 extra(extraMargin,extraMargin,extraMargin); // aabbMax += extra; // aabbMin -= extra; ///quantize query AABB unsigned short int quantizedQueryAabbMin[3]; unsigned short int quantizedQueryAabbMax[3]; lsMemPtr->gOptimizedBvh.quantizeWithClamp(quantizedQueryAabbMin,aabbMin); lsMemPtr->gOptimizedBvh.quantizeWithClamp(quantizedQueryAabbMax,aabbMax); QuantizedNodeArray& nodeArray = lsMemPtr->gOptimizedBvh.getQuantizedNodeArray(); //spu_printf("SPU: numNodes = %d\n",nodeArray.size()); BvhSubtreeInfoArray& subTrees = lsMemPtr->gOptimizedBvh.getSubtreeInfoArray(); spuNodeCallback nodeCallback(wuInput,lsMemPtr,spuContacts); IndexedMeshArray& indexArray = lsMemPtr->gTriangleMeshInterface.getIndexedMeshArray(); //spu_printf("SPU:indexArray.size() = %d\n",indexArray.size()); // spu_printf("SPU: numSubTrees = %d\n",subTrees.size()); //not likely to happen if (subTrees.size() && indexArray.size() == 1) { ///DMA in the index info { int dmaSize = sizeof(btIndexedMesh); uint64_t dmaPpuAddress2 = reinterpret_cast(&indexArray[0]); cellDmaGet(&lsMemPtr->gIndexMesh, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); } //spu_printf("SPU gIndexMesh dma finished\n"); //display the headers int numBatch = subTrees.size(); for (int i=0;i(&subTrees[i]); // spu_printf("&subtree[i]=%llx, dmaSize = %d\n",dmaPpuAddress2,dmaSize); cellDmaGet(&lsMemPtr->gSubtreeHeaders[0], dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); } // spu_printf("nextBatch = %d\n",nextBatch); for (int j=0;jgSubtreeHeaders[j]; bool overlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); if (overlap) { btAssert(subtree.m_subtreeSize); //dma the actual nodes of this subtree { int dmaSize = subtree.m_subtreeSize* sizeof(btQuantizedBvhNode); uint64_t dmaPpuAddress2 = reinterpret_cast(&nodeArray[subtree.m_rootNodeIndex]); cellDmaGet(&lsMemPtr->gSubtreeNodes[0], dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); } spuWalkStacklessQuantizedTree(&nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax, &lsMemPtr->gSubtreeNodes[0], 0, subtree.m_subtreeSize); } // spu_printf("subtreeSize = %d\n",gSubtreeHeaders[j].m_subtreeSize); } // unsigned short int m_quantizedAabbMin[3]; // unsigned short int m_quantizedAabbMax[3]; // int m_rootNodeIndex; // int m_subtreeSize; i+=nextBatch; } //pre-fetch first tree, then loop and double buffer } } //////////////////////// /// Convex versus Convex collision detection (handles collision between sphere, box, cylinder, triangle, cone, convex polyhedron etc) /////////////////// void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts) { #ifdef DEBUG_SPU_COLLISION_DETECTION //spu_printf("SPU: ProcessSpuConvexConvexCollision\n"); #endif //DEBUG_SPU_COLLISION_DETECTION //CollisionShape* shape0 = (CollisionShape*)wuInput->m_collisionShapes[0]; //CollisionShape* shape1 = (CollisionShape*)wuInput->m_collisionShapes[1]; btPersistentManifold* manifold = (btPersistentManifold*)wuInput->m_persistentManifoldPtr; bool genericGjk = true; if (genericGjk) { //try generic GJK SpuVoronoiSimplexSolver vsSolver; SpuMinkowskiPenetrationDepthSolver penetrationSolver; ///DMA in the vertices for convex shapes if (wuInput->m_shapeType0== CONVEX_HULL_SHAPE_PROXYTYPE) { // spu_printf("SPU: DMA btConvexHullShape\n"); ATTRIBUTE_ALIGNED16(char convexHullShape0[sizeof(btConvexHullShape)]); { int dmaSize = sizeof(btConvexHullShape); uint64_t dmaPpuAddress2 = wuInput->m_collisionShapes[0]; cellDmaGet(&convexHullShape0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); } btConvexHullShape* localPtr = (btConvexHullShape*)&convexHullShape0; lsMemPtr->convexVertexData.gNumConvexPoints0 = localPtr->getNumPoints(); if (lsMemPtr->convexVertexData.gNumConvexPoints0>MAX_NUM_SPU_CONVEX_POINTS) { btAssert(0); spu_printf("SPU: Error: MAX_NUM_SPU_CONVEX_POINTS(%d) exceeded: %d\n",MAX_NUM_SPU_CONVEX_POINTS,lsMemPtr->convexVertexData.gNumConvexPoints0); return; } { int dmaSize = lsMemPtr->convexVertexData.gNumConvexPoints0*sizeof(btPoint3); uint64_t dmaPpuAddress2 = (uint64_t) localPtr->getPoints(); cellDmaGet(&lsMemPtr->convexVertexData.g_convexPointBuffer0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); lsMemPtr->convexVertexData.gSpuConvexShapePtr0 = wuInput->m_spuCollisionShapes[0]; lsMemPtr->convexVertexData.gConvexPoints0 = &lsMemPtr->convexVertexData.g_convexPointBuffer0[0]; cellDmaWaitTagStatusAll(DMA_MASK(1)); } } if (wuInput->m_shapeType1 == CONVEX_HULL_SHAPE_PROXYTYPE) { ATTRIBUTE_ALIGNED16(char convexHullShape1[sizeof(btConvexHullShape)]); // spu_printf("SPU: DMA btConvexHullShape\n"); { int dmaSize = sizeof(btConvexHullShape); uint64_t dmaPpuAddress2 = wuInput->m_collisionShapes[1]; cellDmaGet(&convexHullShape1, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); } btConvexHullShape* localPtr = (btConvexHullShape*)&convexHullShape1; lsMemPtr->convexVertexData.gNumConvexPoints1 = localPtr->getNumPoints(); if (lsMemPtr->convexVertexData.gNumConvexPoints1>MAX_NUM_SPU_CONVEX_POINTS) { btAssert(0); spu_printf("SPU: Error: MAX_NUM_SPU_CONVEX_POINTS(%d) exceeded: %d\n",MAX_NUM_SPU_CONVEX_POINTS,lsMemPtr->convexVertexData.gNumConvexPoints1); return; } { int dmaSize = lsMemPtr->convexVertexData.gNumConvexPoints1*sizeof(btPoint3); uint64_t dmaPpuAddress2 = (uint64_t) localPtr->getPoints(); cellDmaGet(&lsMemPtr->convexVertexData.g_convexPointBuffer1, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); lsMemPtr->convexVertexData.gSpuConvexShapePtr1 = wuInput->m_spuCollisionShapes[1]; lsMemPtr->convexVertexData.gConvexPoints1 = &lsMemPtr->convexVertexData.g_convexPointBuffer1[0]; } } void* shape0Ptr = wuInput->m_spuCollisionShapes[0]; void* shape1Ptr = wuInput->m_spuCollisionShapes[1]; int shapeType0 = wuInput->m_shapeType0; int shapeType1 = wuInput->m_shapeType1; float marginA = wuInput->m_collisionMargin0; float marginB = wuInput->m_collisionMargin1; SpuClosestPointInput cpInput; cpInput.m_convexVertexData = &lsMemPtr->convexVertexData; cpInput.m_transformA = wuInput->m_worldTransform0; cpInput.m_transformB = wuInput->m_worldTransform1; float sumMargin = (marginA+marginB); cpInput.m_maximumDistanceSquared = sumMargin * sumMargin; uint64_t manifoldAddress = (uint64_t)manifold; btPersistentManifold* spuManifold=&lsMemPtr->gPersistentManifold; spuContacts.setContactInfo(spuManifold,manifoldAddress,wuInput->m_worldTransform0,wuInput->m_worldTransform1); SpuGjkPairDetector gjk(shape0Ptr,shape1Ptr,shapeType0,shapeType1,marginA,marginB,&vsSolver,&penetrationSolver); gjk.getClosestPoints(cpInput,spuContacts);//,debugDraw); } } void processCollisionTask(void* userPtr, void* lsMemPtr) { SpuGatherAndProcessPairsTaskDesc* taskDescPtr = (SpuGatherAndProcessPairsTaskDesc*)userPtr; SpuGatherAndProcessPairsTaskDesc& taskDesc = *taskDescPtr; CollisionTask_LocalStoreMemory* colMemPtr = (CollisionTask_LocalStoreMemory*)lsMemPtr; CollisionTask_LocalStoreMemory& lsMem = *(colMemPtr); SpuContactResult spuContacts; uint64_t dmaInPtr = taskDesc.inPtr; unsigned int numPages = taskDesc.numPages; unsigned int numOnLastPage = taskDesc.numOnLastPage; // prefetch first set of inputs and wait unsigned int nextNumOnPage = (numPages > 1)? MIDPHASE_NUM_WORKUNITS_PER_PAGE : numOnLastPage; lsMem.g_workUnitTaskBuffers.backBufferDmaGet(dmaInPtr, nextNumOnPage*sizeof(SpuGatherAndProcessWorkUnitInput), DMA_TAG(3)); dmaInPtr += MIDPHASE_WORKUNIT_PAGE_SIZE; for (unsigned int i = 0; i < numPages; i++) { // wait for back buffer dma and swap buffers unsigned char *inputPtr = lsMem.g_workUnitTaskBuffers.swapBuffers(); // number on current page is number prefetched last iteration unsigned int numOnPage = nextNumOnPage; unsigned int j; // prefetch next set of inputs if (i < numPages-1) { nextNumOnPage = (i == numPages-2)? numOnLastPage : MIDPHASE_NUM_WORKUNITS_PER_PAGE; lsMem.g_workUnitTaskBuffers.backBufferDmaGet(dmaInPtr, nextNumOnPage*sizeof(SpuGatherAndProcessWorkUnitInput), DMA_TAG(3)); dmaInPtr += MIDPHASE_WORKUNIT_PAGE_SIZE; } SpuGatherAndProcessWorkUnitInput* wuInputs = reinterpret_cast(inputPtr); for (j = 0; j < numOnPage; j++) { #ifdef DEBUG_SPU_COLLISION_DETECTION printMidphaseInput(&wuInputs[j]); #endif //DEBUG_SPU_COLLISION_DETECTION int numPairs = wuInputs[j].m_endIndex - wuInputs[j].m_startIndex; // printf("startIndex=%d, endIndex = %d\n",wuInputs[j].m_startIndex,wuInputs[j].m_endIndex); if (numPairs) { { int dmaSize = numPairs*sizeof(btBroadphasePair); uint64_t dmaPpuAddress = wuInputs[j].m_pairArrayPtr+wuInputs[j].m_startIndex * sizeof(btBroadphasePair); cellDmaGet(&lsMem.gBroadphasePairs, dmaPpuAddress , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); } for (int p=0;pgetContactManifoldPtr(); #ifdef DEBUG_SPU_COLLISION_DETECTION spu_printf("SPU: manifoldPtr: %llx",collisionPairInput->m_persistentManifoldPtr); #endif //DEBUG_SPU_COLLISION_DETECTION { int dmaSize = sizeof(btBroadphaseProxy); uint64_t dmaPpuAddress2 = (uint64_t)pair.m_pProxy0; cellDmaGet(&lsMem.gProxy0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); } { int dmaSize = sizeof(btBroadphaseProxy); uint64_t dmaPpuAddress2 = (uint64_t)pair.m_pProxy1; cellDmaGet(&lsMem.gProxy1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(2)); } //btCollisionObject* colObj0 = (btCollisionObject*)gProxy0.m_clientObject; //btCollisionObject* colObj1 = (btCollisionObject*)gProxy1.m_clientObject; { int dmaSize = sizeof(btCollisionObject); uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gProxy0.m_clientObject; cellDmaGet(&lsMem.gColObj0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); } { int dmaSize = sizeof(btCollisionObject); uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gProxy1.m_clientObject; cellDmaGet(&lsMem.gColObj1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(2)); } ///can wait on the combined DMA_MASK, or dma on the same tag collisionPairInput.m_shapeType0 = lsMem.getlocalCollisionAlgorithm()->getShapeType0(); collisionPairInput.m_shapeType1 = lsMem.getlocalCollisionAlgorithm()->getShapeType1(); collisionPairInput.m_collisionMargin0 = lsMem.getlocalCollisionAlgorithm()->getCollisionMargin0(); collisionPairInput.m_collisionMargin1 = lsMem.getlocalCollisionAlgorithm()->getCollisionMargin1(); #ifdef DEBUG_SPU_COLLISION_DETECTION spu_printf("SPU collisionPairInput->m_shapeType0 = %d\n",collisionPairInput->m_shapeType0); spu_printf("SPU collisionPairInput->m_shapeType1 = %d\n",collisionPairInput->m_shapeType1); #endif //DEBUG_SPU_COLLISION_DETECTION if (1) { collisionPairInput.m_worldTransform0 = lsMem.gColObj0.getWorldTransform(); collisionPairInput.m_worldTransform1 = lsMem.gColObj1.getWorldTransform(); #ifdef DEBUG_SPU_COLLISION_DETECTION spu_printf("SPU worldTrans0.origin = (%f,%f,%f)\n", collisionPairInput->m_worldTransform0.getOrigin().getX(), collisionPairInput->m_worldTransform0.getOrigin().getY(), collisionPairInput->m_worldTransform0.getOrigin().getZ()); spu_printf("SPU worldTrans1.origin = (%f,%f,%f)\n", collisionPairInput->m_worldTransform1.getOrigin().getX(), collisionPairInput->m_worldTransform1.getOrigin().getY(), collisionPairInput->m_worldTransform1.getOrigin().getZ()); #endif //DEBUG_SPU_COLLISION_DETECTION { int dmaSize = sizeof(btPersistentManifold); uint64_t dmaPpuAddress2 = collisionPairInput.m_persistentManifoldPtr; cellDmaGet(&lsMem.gPersistentManifold, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); } if (btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType0) && btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType1)) { { int dmaSize = lsMem.maxShapeSize; uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj0.getCollisionShape(); cellDmaGet(lsMem.gCollisionShape0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); } { int dmaSize = lsMem.maxShapeSize; uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj1.getCollisionShape(); cellDmaGet(lsMem.gCollisionShape1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(2)); } btConvexShape* spuConvexShape0 = (btConvexShape*)lsMem.gCollisionShape0; btConvexShape* spuConvexShape1 = (btConvexShape*)lsMem.gCollisionShape1; btVector3 dim0 = spuConvexShape0->getImplicitShapeDimensions(); btVector3 dim1 = spuConvexShape1->getImplicitShapeDimensions(); collisionPairInput.m_primitiveDimensions0 = dim0; collisionPairInput.m_primitiveDimensions1 = dim1; collisionPairInput.m_collisionShapes[0] = (uint64_t)lsMem.gColObj0.getCollisionShape(); collisionPairInput.m_collisionShapes[1] = (uint64_t)lsMem.gColObj1.getCollisionShape(); collisionPairInput.m_spuCollisionShapes[0] = spuConvexShape0; collisionPairInput.m_spuCollisionShapes[1] = spuConvexShape1; ProcessSpuConvexConvexCollision(&collisionPairInput,&lsMem, spuContacts); } else { //a non-convex shape is involved bool isSwapped = false; bool handleConvexConcave = false; if (btBroadphaseProxy::isConcave(collisionPairInput.m_shapeType0) && btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType1)) { isSwapped = true; spu_printf("SPU convex/concave swapped, unsupported!\n"); handleConvexConcave = true; } if (btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType0)&& btBroadphaseProxy::isConcave(collisionPairInput.m_shapeType1)) { handleConvexConcave = true; } if (handleConvexConcave && !isSwapped) { // spu_printf("SPU: non-convex detected\n"); { // uint64_t dmaPpuAddress2 = (uint64_t)gProxy1.m_clientObject; // spu_printf("SPU: gColObj1 trimesh = %llx\n",dmaPpuAddress2); } ///dma and initialize the convex object { int dmaSize = lsMem.maxShapeSize; uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj0.getCollisionShape(); cellDmaGet(lsMem.gCollisionShape0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(1)); } ///dma and initialize the concave object { int dmaSize = lsMem.maxShapeSize;//sizeof(btBvhTriangleMeshShape);//lsMem.maxShapeSize; uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj1.getCollisionShape(); // spu_printf("SPU: trimesh = %llx\n",dmaPpuAddress2); cellDmaGet(lsMem.gCollisionShape1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0); cellDmaWaitTagStatusAll(DMA_MASK(2)); } btConvexShape* spuConvexShape0 = (btConvexShape*)lsMem.gCollisionShape0; btBvhTriangleMeshShape* trimeshShape = (btBvhTriangleMeshShape*)lsMem.gCollisionShape1; btVector3 dim0 = spuConvexShape0->getImplicitShapeDimensions(); collisionPairInput.m_primitiveDimensions0 = dim0; collisionPairInput.m_collisionShapes[0] = (uint64_t)lsMem.gColObj0.getCollisionShape(); collisionPairInput.m_collisionShapes[1] = (uint64_t)lsMem.gColObj1.getCollisionShape(); collisionPairInput.m_spuCollisionShapes[0] = spuConvexShape0; collisionPairInput.m_spuCollisionShapes[1] = trimeshShape; ProcessConvexConcaveSpuCollision(&collisionPairInput,&lsMem,spuContacts); } } spuContacts.flush(); } } } } } } }