"""This file implements the functionalities of a minitaur using pybullet. """ import collections import copy import math import re import numpy as np import motor INIT_POSITION = [0, 0, .2] INIT_RACK_POSITION = [0, 0, 1] INIT_ORIENTATION = [0, 0, 0, 1] KNEE_CONSTRAINT_POINT_RIGHT = [0, 0.005, 0.2] KNEE_CONSTRAINT_POINT_LEFT = [0, 0.01, 0.2] OVERHEAT_SHUTDOWN_TORQUE = 2.45 OVERHEAT_SHUTDOWN_TIME = 1.0 LEG_POSITION = ["front_left", "back_left", "front_right", "back_right"] MOTOR_NAMES = [ "motor_front_leftL_joint", "motor_front_leftR_joint", "motor_back_leftL_joint", "motor_back_leftR_joint", "motor_front_rightL_joint", "motor_front_rightR_joint", "motor_back_rightL_joint", "motor_back_rightR_joint" ] _CHASSIS_NAME_PATTERN = re.compile(r"chassis\D*center") _MOTOR_NAME_PATTERN = re.compile(r"motor\D*joint") _KNEE_NAME_PATTERN = re.compile(r"knee\D*") SENSOR_NOISE_STDDEV = (0.0, 0.0, 0.0, 0.0, 0.0) TWO_PI = 2 * math.pi def MapToMinusPiToPi(angles): """Maps a list of angles to [-pi, pi]. Args: angles: A list of angles in rad. Returns: A list of angle mapped to [-pi, pi]. """ mapped_angles = copy.deepcopy(angles) for i in range(len(angles)): mapped_angles[i] = math.fmod(angles[i], TWO_PI) if mapped_angles[i] >= math.pi: mapped_angles[i] -= TWO_PI elif mapped_angles[i] < -math.pi: mapped_angles[i] += TWO_PI return mapped_angles class Minitaur(object): """The minitaur class that simulates a quadruped robot from Ghost Robotics. """ def __init__(self, pybullet_client, urdf_root="", time_step=0.01, action_repeat=1, self_collision_enabled=False, motor_velocity_limit=np.inf, pd_control_enabled=False, accurate_motor_model_enabled=False, remove_default_joint_damping=False, motor_kp=1.0, motor_kd=0.02, pd_latency=0.0, control_latency=0.0, observation_noise_stdev=SENSOR_NOISE_STDDEV, torque_control_enabled=False, motor_overheat_protection=False, on_rack=False): """Constructs a minitaur and reset it to the initial states. Args: pybullet_client: The instance of BulletClient to manage different simulations. urdf_root: The path to the urdf folder. time_step: The time step of the simulation. action_repeat: The number of ApplyAction() for each control step. self_collision_enabled: Whether to enable self collision. motor_velocity_limit: The upper limit of the motor velocity. pd_control_enabled: Whether to use PD control for the motors. accurate_motor_model_enabled: Whether to use the accurate DC motor model. remove_default_joint_damping: Whether to remove the default joint damping. motor_kp: proportional gain for the accurate motor model. motor_kd: derivative gain for the accurate motor model. pd_latency: The latency of the observations (in seconds) used to calculate PD control. On the real hardware, it is the latency between the microcontroller and the motor controller. control_latency: The latency of the observations (in second) used to calculate action. On the real hardware, it is the latency from the motor controller, the microcontroller to the host (Nvidia TX2). observation_noise_stdev: The standard deviation of a Gaussian noise model for the sensor. It should be an array for separate sensors in the following order [motor_angle, motor_velocity, motor_torque, base_roll_pitch_yaw, base_angular_velocity] torque_control_enabled: Whether to use the torque control, if set to False, pose control will be used. motor_overheat_protection: Whether to shutdown the motor that has exerted large torque (OVERHEAT_SHUTDOWN_TORQUE) for an extended amount of time (OVERHEAT_SHUTDOWN_TIME). See ApplyAction() in minitaur.py for more details. on_rack: Whether to place the minitaur on rack. This is only used to debug the walking gait. In this mode, the minitaur's base is hanged midair so that its walking gait is clearer to visualize. """ self.num_motors = 8 self.num_legs = int(self.num_motors / 2) self._pybullet_client = pybullet_client self._action_repeat = action_repeat self._urdf_root = urdf_root self._self_collision_enabled = self_collision_enabled self._motor_velocity_limit = motor_velocity_limit self._pd_control_enabled = pd_control_enabled self._motor_direction = [-1, -1, -1, -1, 1, 1, 1, 1] self._observed_motor_torques = np.zeros(self.num_motors) self._applied_motor_torques = np.zeros(self.num_motors) self._max_force = 3.5 self._pd_latency = pd_latency self._control_latency = control_latency self._observation_noise_stdev = observation_noise_stdev self._accurate_motor_model_enabled = accurate_motor_model_enabled self._remove_default_joint_damping = remove_default_joint_damping self._observation_history = collections.deque(maxlen=100) self._control_observation = [] self._chassis_link_ids = [-1] self._leg_link_ids = [] self._motor_link_ids = [] self._foot_link_ids = [] self._torque_control_enabled = torque_control_enabled self._motor_overheat_protection = motor_overheat_protection self._on_rack = on_rack if self._accurate_motor_model_enabled: self._kp = motor_kp self._kd = motor_kd self._motor_model = motor.MotorModel( torque_control_enabled=self._torque_control_enabled, kp=self._kp, kd=self._kd) elif self._pd_control_enabled: self._kp = 8 self._kd = 0.3 else: self._kp = 1 self._kd = 1 self.time_step = time_step self._step_counter = 0 # reset_time=-1.0 means skipping the reset motion. # See Reset for more details. self.Reset(reset_time=-1.0) def GetTimeSinceReset(self): return self._step_counter * self.time_step def Step(self, action): for _ in range(self._action_repeat): self.ApplyAction(action) self._pybullet_client.stepSimulation() self.ReceiveObservation() self._step_counter += 1 def Terminate(self): pass def _RecordMassInfoFromURDF(self): self._base_mass_urdf = [] for chassis_id in self._chassis_link_ids: self._base_mass_urdf.append( self._pybullet_client.getDynamicsInfo(self.quadruped, chassis_id)[0]) self._leg_masses_urdf = [] for leg_id in self._leg_link_ids: self._leg_masses_urdf.append( self._pybullet_client.getDynamicsInfo(self.quadruped, leg_id)[0]) for motor_id in self._motor_link_ids: self._leg_masses_urdf.append( self._pybullet_client.getDynamicsInfo(self.quadruped, motor_id)[0]) def _RecordInertiaInfoFromURDF(self): """Record the inertia of each body from URDF file.""" self._link_urdf = [] num_bodies = self._pybullet_client.getNumJoints(self.quadruped) for body_id in range(-1, num_bodies): # -1 is for the base link. inertia = self._pybullet_client.getDynamicsInfo(self.quadruped, body_id)[2] self._link_urdf.append(inertia) # We need to use id+1 to index self._link_urdf because it has the base # (index = -1) at the first element. self._base_inertia_urdf = [ self._link_urdf[chassis_id + 1] for chassis_id in self._chassis_link_ids ] self._leg_inertia_urdf = [ self._link_urdf[leg_id + 1] for leg_id in self._leg_link_ids ] self._leg_inertia_urdf.extend( [self._link_urdf[motor_id + 1] for motor_id in self._motor_link_ids]) def _BuildJointNameToIdDict(self): num_joints = self._pybullet_client.getNumJoints(self.quadruped) self._joint_name_to_id = {} for i in range(num_joints): joint_info = self._pybullet_client.getJointInfo(self.quadruped, i) self._joint_name_to_id[joint_info[1].decode("UTF-8")] = joint_info[0] def _BuildUrdfIds(self): """Build the link Ids from its name in the URDF file.""" num_joints = self._pybullet_client.getNumJoints(self.quadruped) self._chassis_link_ids = [-1] # the self._leg_link_ids include both the upper and lower links of the leg. self._leg_link_ids = [] self._motor_link_ids = [] self._foot_link_ids = [] for i in range(num_joints): joint_info = self._pybullet_client.getJointInfo(self.quadruped, i) joint_name = joint_info[1].decode("UTF-8") joint_id = self._joint_name_to_id[joint_name] if _CHASSIS_NAME_PATTERN.match(joint_name): self._chassis_link_ids.append(joint_id) elif _MOTOR_NAME_PATTERN.match(joint_name): self._motor_link_ids.append(joint_id) elif _KNEE_NAME_PATTERN.match(joint_name): self._foot_link_ids.append(joint_id) else: self._leg_link_ids.append(joint_id) self._leg_link_ids.extend(self._foot_link_ids) self._chassis_link_ids.sort() self._motor_link_ids.sort() self._foot_link_ids.sort() self._leg_link_ids.sort() def _RemoveDefaultJointDamping(self): num_joints = self._pybullet_client.getNumJoints(self.quadruped) for i in range(num_joints): joint_info = self._pybullet_client.getJointInfo(self.quadruped, i) self._pybullet_client.changeDynamics( joint_info[0], -1, linearDamping=0, angularDamping=0) def _BuildMotorIdList(self): self._motor_id_list = [ self._joint_name_to_id[motor_name] for motor_name in MOTOR_NAMES ] def IsObservationValid(self): """Whether the observation is valid for the current time step. In simulation, observations are always valid. In real hardware, it may not be valid from time to time when communication error happens between the Nvidia TX2 and the microcontroller. Returns: Whether the observation is valid for the current time step. """ return True def Reset(self, reload_urdf=True, default_motor_angles=None, reset_time=3.0): """Reset the minitaur to its initial states. Args: reload_urdf: Whether to reload the urdf file. If not, Reset() just place the minitaur back to its starting position. default_motor_angles: The default motor angles. If it is None, minitaur will hold a default pose (motor angle math.pi / 2) for 100 steps. In torque control mode, the phase of holding the default pose is skipped. reset_time: The duration (in seconds) to hold the default motor angles. If reset_time <= 0 or in torque control mode, the phase of holding the default pose is skipped. """ if self._on_rack: init_position = INIT_RACK_POSITION else: init_position = INIT_POSITION if reload_urdf: if self._self_collision_enabled: self.quadruped = self._pybullet_client.loadURDF( "%s/quadruped/minitaur.urdf" % self._urdf_root, init_position, useFixedBase=self._on_rack, flags=self._pybullet_client.URDF_USE_SELF_COLLISION) else: self.quadruped = self._pybullet_client.loadURDF( "%s/quadruped/minitaur.urdf" % self._urdf_root, init_position, useFixedBase=self._on_rack) self._BuildJointNameToIdDict() self._BuildUrdfIds() if self._remove_default_joint_damping: self._RemoveDefaultJointDamping() self._BuildMotorIdList() self._RecordMassInfoFromURDF() self._RecordInertiaInfoFromURDF() self.ResetPose(add_constraint=True) else: self._pybullet_client.resetBasePositionAndOrientation( self.quadruped, init_position, INIT_ORIENTATION) self._pybullet_client.resetBaseVelocity(self.quadruped, [0, 0, 0], [0, 0, 0]) self.ResetPose(add_constraint=False) self._overheat_counter = np.zeros(self.num_motors) self._motor_enabled_list = [True] * self.num_motors self._step_counter = 0 # Perform reset motion within reset_duration if in position control mode. # Nothing is performed if in torque control mode for now. # TODO(jietan): Add reset motion when the torque control is fully supported. self._observation_history.clear() if not self._torque_control_enabled and reset_time > 0.0: self.ReceiveObservation() for _ in range(100): self.ApplyAction([math.pi / 2] * self.num_motors) self._pybullet_client.stepSimulation() self.ReceiveObservation() if default_motor_angles is not None: num_steps_to_reset = int(reset_time / self.time_step) for _ in range(num_steps_to_reset): self.ApplyAction(default_motor_angles) self._pybullet_client.stepSimulation() self.ReceiveObservation() self.ReceiveObservation() def _SetMotorTorqueById(self, motor_id, torque): self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=motor_id, controlMode=self._pybullet_client.TORQUE_CONTROL, force=torque) def _SetDesiredMotorAngleById(self, motor_id, desired_angle): self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=motor_id, controlMode=self._pybullet_client.POSITION_CONTROL, targetPosition=desired_angle, positionGain=self._kp, velocityGain=self._kd, force=self._max_force) def _SetDesiredMotorAngleByName(self, motor_name, desired_angle): self._SetDesiredMotorAngleById(self._joint_name_to_id[motor_name], desired_angle) def ResetPose(self, add_constraint): """Reset the pose of the minitaur. Args: add_constraint: Whether to add a constraint at the joints of two feet. """ for i in range(self.num_legs): self._ResetPoseForLeg(i, add_constraint) def _ResetPoseForLeg(self, leg_id, add_constraint): """Reset the initial pose for the leg. Args: leg_id: It should be 0, 1, 2, or 3, which represents the leg at front_left, back_left, front_right and back_right. add_constraint: Whether to add a constraint at the joints of two feet. """ knee_friction_force = 0 half_pi = math.pi / 2.0 knee_angle = -2.1834 leg_position = LEG_POSITION[leg_id] self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["motor_" + leg_position + "L_joint"], self._motor_direction[2 * leg_id] * half_pi, targetVelocity=0) self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["knee_" + leg_position + "L_link"], self._motor_direction[2 * leg_id] * knee_angle, targetVelocity=0) self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["motor_" + leg_position + "R_joint"], self._motor_direction[2 * leg_id + 1] * half_pi, targetVelocity=0) self._pybullet_client.resetJointState( self.quadruped, self._joint_name_to_id["knee_" + leg_position + "R_link"], self._motor_direction[2 * leg_id + 1] * knee_angle, targetVelocity=0) if add_constraint: self._pybullet_client.createConstraint( self.quadruped, self._joint_name_to_id["knee_" + leg_position + "R_link"], self.quadruped, self._joint_name_to_id["knee_" + leg_position + "L_link"], self._pybullet_client.JOINT_POINT2POINT, [0, 0, 0], KNEE_CONSTRAINT_POINT_RIGHT, KNEE_CONSTRAINT_POINT_LEFT) if self._accurate_motor_model_enabled or self._pd_control_enabled: # Disable the default motor in pybullet. self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=( self._joint_name_to_id["motor_" + leg_position + "L_joint"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=( self._joint_name_to_id["motor_" + leg_position + "R_joint"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) else: self._SetDesiredMotorAngleByName( "motor_" + leg_position + "L_joint", self._motor_direction[2 * leg_id] * half_pi) self._SetDesiredMotorAngleByName( "motor_" + leg_position + "R_joint", self._motor_direction[2 * leg_id + 1] * half_pi) self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["knee_" + leg_position + "L_link"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=(self._joint_name_to_id["knee_" + leg_position + "R_link"]), controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=knee_friction_force) def GetBasePosition(self): """Get the position of minitaur's base. Returns: The position of minitaur's base. """ position, _ = ( self._pybullet_client.getBasePositionAndOrientation(self.quadruped)) return position def GetTrueBaseRollPitchYaw(self): """Get minitaur's base orientation in euler angle in the world frame. Returns: A tuple (roll, pitch, yaw) of the base in world frame. """ orientation = self.GetTrueBaseOrientation() roll_pitch_yaw = self._pybullet_client.getEulerFromQuaternion(orientation) return np.asarray(roll_pitch_yaw) def GetBaseRollPitchYaw(self): """Get minitaur's base orientation in euler angle in the world frame. This function mimicks the noisy sensor reading and adds latency. Returns: A tuple (roll, pitch, yaw) of the base in world frame polluted by noise and latency. """ delayed_orientation = np.array( self._control_observation[3 * self.num_motors:3 * self.num_motors + 4]) delayed_roll_pitch_yaw = self._pybullet_client.getEulerFromQuaternion( delayed_orientation) roll_pitch_yaw = self._AddSensorNoise( np.array(delayed_roll_pitch_yaw), self._observation_noise_stdev[3]) return roll_pitch_yaw def GetTrueMotorAngles(self): """Gets the eight motor angles at the current moment, mapped to [-pi, pi]. Returns: Motor angles, mapped to [-pi, pi]. """ motor_angles = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[0] for motor_id in self._motor_id_list ] motor_angles = np.multiply(motor_angles, self._motor_direction) return motor_angles def GetMotorAngles(self): """Gets the eight motor angles. This function mimicks the noisy sensor reading and adds latency. The motor angles that are delayed, noise polluted, and mapped to [-pi, pi]. Returns: Motor angles polluted by noise and latency, mapped to [-pi, pi]. """ motor_angles = self._AddSensorNoise( np.array(self._control_observation[0:self.num_motors]), self._observation_noise_stdev[0]) return MapToMinusPiToPi(motor_angles) def GetTrueMotorVelocities(self): """Get the velocity of all eight motors. Returns: Velocities of all eight motors. """ motor_velocities = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[1] for motor_id in self._motor_id_list ] motor_velocities = np.multiply(motor_velocities, self._motor_direction) return motor_velocities def GetMotorVelocities(self): """Get the velocity of all eight motors. This function mimicks the noisy sensor reading and adds latency. Returns: Velocities of all eight motors polluted by noise and latency. """ return self._AddSensorNoise( np.array( self._control_observation[self.num_motors:2 * self.num_motors]), self._observation_noise_stdev[1]) def GetTrueMotorTorques(self): """Get the amount of torque the motors are exerting. Returns: Motor torques of all eight motors. """ if self._accurate_motor_model_enabled or self._pd_control_enabled: return self._observed_motor_torques else: motor_torques = [ self._pybullet_client.getJointState(self.quadruped, motor_id)[3] for motor_id in self._motor_id_list ] motor_torques = np.multiply(motor_torques, self._motor_direction) return motor_torques def GetMotorTorques(self): """Get the amount of torque the motors are exerting. This function mimicks the noisy sensor reading and adds latency. Returns: Motor torques of all eight motors polluted by noise and latency. """ return self._AddSensorNoise( np.array( self._control_observation[2 * self.num_motors:3 * self.num_motors]), self._observation_noise_stdev[2]) def GetTrueBaseOrientation(self): """Get the orientation of minitaur's base, represented as quaternion. Returns: The orientation of minitaur's base. """ _, orientation = ( self._pybullet_client.getBasePositionAndOrientation(self.quadruped)) return orientation def GetBaseOrientation(self): """Get the orientation of minitaur's base, represented as quaternion. This function mimicks the noisy sensor reading and adds latency. Returns: The orientation of minitaur's base polluted by noise and latency. """ return self._pybullet_client.getQuaternionFromEuler( self.GetBaseRollPitchYaw()) def GetTrueBaseRollPitchYawRate(self): """Get the rate of orientation change of the minitaur's base in euler angle. Returns: rate of (roll, pitch, yaw) change of the minitaur's base. """ vel = self._pybullet_client.getBaseVelocity(self.quadruped) return np.asarray([vel[1][0], vel[1][1], vel[1][2]]) def GetBaseRollPitchYawRate(self): """Get the rate of orientation change of the minitaur's base in euler angle. This function mimicks the noisy sensor reading and adds latency. Returns: rate of (roll, pitch, yaw) change of the minitaur's base polluted by noise and latency. """ return self._AddSensorNoise( np.array(self._control_observation[3 * self.num_motors + 4: 3 * self.num_motors + 7]), self._observation_noise_stdev[4]) def GetActionDimension(self): """Get the length of the action list. Returns: The length of the action list. """ return self.num_motors def ApplyAction(self, motor_commands, motor_kps=None, motor_kds=None): """Set the desired motor angles to the motors of the minitaur. The desired motor angles are clipped based on the maximum allowed velocity. If the pd_control_enabled is True, a torque is calculated according to the difference between current and desired joint angle, as well as the joint velocity. This torque is exerted to the motor. For more information about PD control, please refer to: https://en.wikipedia.org/wiki/PID_controller. Args: motor_commands: The eight desired motor angles. motor_kps: Proportional gains for the motor model. If not provided, it uses the default kp of the minitaur for all the motors. motor_kds: Derivative gains for the motor model. If not provided, it uses the default kd of the minitaur for all the motors. """ if self._motor_velocity_limit < np.inf: current_motor_angle = self.GetTrueMotorAngles() motor_commands_max = ( current_motor_angle + self.time_step * self._motor_velocity_limit) motor_commands_min = ( current_motor_angle - self.time_step * self._motor_velocity_limit) motor_commands = np.clip(motor_commands, motor_commands_min, motor_commands_max) # Set the kp and kd for all the motors if not provided as an argument. if motor_kps is None: motor_kps = np.full(8, self._kp) if motor_kds is None: motor_kds = np.full(8, self._kd) if self._accurate_motor_model_enabled or self._pd_control_enabled: q, qdot = self._GetPDObservation() qdot_true = self.GetTrueMotorVelocities() if self._accurate_motor_model_enabled: actual_torque, observed_torque = self._motor_model.convert_to_torque( motor_commands, q, qdot, qdot_true, motor_kps, motor_kds) if self._motor_overheat_protection: for i in range(self.num_motors): if abs(actual_torque[i]) > OVERHEAT_SHUTDOWN_TORQUE: self._overheat_counter[i] += 1 else: self._overheat_counter[i] = 0 if (self._overheat_counter[i] > OVERHEAT_SHUTDOWN_TIME / self.time_step): self._motor_enabled_list[i] = False # The torque is already in the observation space because we use # GetMotorAngles and GetMotorVelocities. self._observed_motor_torques = observed_torque # Transform into the motor space when applying the torque. self._applied_motor_torque = np.multiply(actual_torque, self._motor_direction) for motor_id, motor_torque, motor_enabled in zip( self._motor_id_list, self._applied_motor_torque, self._motor_enabled_list): if motor_enabled: self._SetMotorTorqueById(motor_id, motor_torque) else: self._SetMotorTorqueById(motor_id, 0) else: torque_commands = -1 * motor_kps * ( q - motor_commands) - motor_kds * qdot # The torque is already in the observation space because we use # GetMotorAngles and GetMotorVelocities. self._observed_motor_torques = torque_commands # Transform into the motor space when applying the torque. self._applied_motor_torques = np.multiply(self._observed_motor_torques, self._motor_direction) for motor_id, motor_torque in zip(self._motor_id_list, self._applied_motor_torques): self._SetMotorTorqueById(motor_id, motor_torque) else: motor_commands_with_direction = np.multiply(motor_commands, self._motor_direction) for motor_id, motor_command_with_direction in zip( self._motor_id_list, motor_commands_with_direction): self._SetDesiredMotorAngleById(motor_id, motor_command_with_direction) def ConvertFromLegModel(self, actions): """Convert the actions that use leg model to the real motor actions. Args: actions: The theta, phi of the leg model. Returns: The eight desired motor angles that can be used in ApplyActions(). """ motor_angle = copy.deepcopy(actions) scale_for_singularity = 1 offset_for_singularity = 1.5 half_num_motors = int(self.num_motors / 2) quater_pi = math.pi / 4 for i in range(self.num_motors): action_idx = int(i // 2) forward_backward_component = (-scale_for_singularity * quater_pi * ( actions[action_idx + half_num_motors] + offset_for_singularity)) extension_component = (-1)**i * quater_pi * actions[action_idx] if i >= half_num_motors: extension_component = -extension_component motor_angle[i] = ( math.pi + forward_backward_component + extension_component) return motor_angle def GetBaseMassesFromURDF(self): """Get the mass of the base from the URDF file.""" return self._base_mass_urdf def GetBaseInertiasFromURDF(self): """Get the inertia of the base from the URDF file.""" return self._base_inertia_urdf def GetLegMassesFromURDF(self): """Get the mass of the legs from the URDF file.""" return self._leg_masses_urdf def GetLegInertiasFromURDF(self): """Get the inertia of the legs from the URDF file.""" return self._leg_inertia_urdf def SetBaseMasses(self, base_mass): """Set the mass of minitaur's base. Args: base_mass: A list of masses of each body link in CHASIS_LINK_IDS. The length of this list should be the same as the length of CHASIS_LINK_IDS. Raises: ValueError: It is raised when the length of base_mass is not the same as the length of self._chassis_link_ids. """ if len(base_mass) != len(self._chassis_link_ids): raise ValueError( "The length of base_mass {} and self._chassis_link_ids {} are not " "the same.".format(len(base_mass), len(self._chassis_link_ids))) for chassis_id, chassis_mass in zip(self._chassis_link_ids, base_mass): self._pybullet_client.changeDynamics( self.quadruped, chassis_id, mass=chassis_mass) def SetLegMasses(self, leg_masses): """Set the mass of the legs. A leg includes leg_link and motor. 4 legs contain 16 links (4 links each) and 8 motors. First 16 numbers correspond to link masses, last 8 correspond to motor masses (24 total). Args: leg_masses: The leg and motor masses for all the leg links and motors. Raises: ValueError: It is raised when the length of masses is not equal to number of links + motors. """ if len(leg_masses) != len(self._leg_link_ids) + len(self._motor_link_ids): raise ValueError("The number of values passed to SetLegMasses are " "different than number of leg links and motors.") for leg_id, leg_mass in zip(self._leg_link_ids, leg_masses): self._pybullet_client.changeDynamics( self.quadruped, leg_id, mass=leg_mass) motor_masses = leg_masses[len(self._leg_link_ids):] for link_id, motor_mass in zip(self._motor_link_ids, motor_masses): self._pybullet_client.changeDynamics( self.quadruped, link_id, mass=motor_mass) def SetBaseInertias(self, base_inertias): """Set the inertias of minitaur's base. Args: base_inertias: A list of inertias of each body link in CHASIS_LINK_IDS. The length of this list should be the same as the length of CHASIS_LINK_IDS. Raises: ValueError: It is raised when the length of base_inertias is not the same as the length of self._chassis_link_ids and base_inertias contains negative values. """ if len(base_inertias) != len(self._chassis_link_ids): raise ValueError( "The length of base_inertias {} and self._chassis_link_ids {} are " "not the same.".format( len(base_inertias), len(self._chassis_link_ids))) for chassis_id, chassis_inertia in zip(self._chassis_link_ids, base_inertias): for inertia_value in chassis_inertia: if (np.asarray(inertia_value) < 0).any(): raise ValueError("Values in inertia matrix should be non-negative.") self._pybullet_client.changeDynamics( self.quadruped, chassis_id, localInertiaDiagonal=chassis_inertia) def SetLegInertias(self, leg_inertias): """Set the inertias of the legs. A leg includes leg_link and motor. 4 legs contain 16 links (4 links each) and 8 motors. First 16 numbers correspond to link inertia, last 8 correspond to motor inertia (24 total). Args: leg_inertias: The leg and motor inertias for all the leg links and motors. Raises: ValueError: It is raised when the length of inertias is not equal to the number of links + motors or leg_inertias contains negative values. """ if len(leg_inertias) != len(self._leg_link_ids) + len(self._motor_link_ids): raise ValueError("The number of values passed to SetLegMasses are " "different than number of leg links and motors.") for leg_id, leg_inertia in zip(self._leg_link_ids, leg_inertias): for inertia_value in leg_inertias: if (np.asarray(inertia_value) < 0).any(): raise ValueError("Values in inertia matrix should be non-negative.") self._pybullet_client.changeDynamics( self.quadruped, leg_id, localInertiaDiagonal=leg_inertia) motor_inertias = leg_inertias[len(self._leg_link_ids):] for link_id, motor_inertia in zip(self._motor_link_ids, motor_inertias): for inertia_value in motor_inertias: if (np.asarray(inertia_value) < 0).any(): raise ValueError("Values in inertia matrix should be non-negative.") self._pybullet_client.changeDynamics( self.quadruped, link_id, localInertiaDiagonal=motor_inertia) def SetFootFriction(self, foot_friction): """Set the lateral friction of the feet. Args: foot_friction: The lateral friction coefficient of the foot. This value is shared by all four feet. """ for link_id in self._foot_link_ids: self._pybullet_client.changeDynamics( self.quadruped, link_id, lateralFriction=foot_friction) # TODO(b/73748980): Add more API's to set other contact parameters. def SetFootRestitution(self, foot_restitution): """Set the coefficient of restitution at the feet. Args: foot_restitution: The coefficient of restitution (bounciness) of the feet. This value is shared by all four feet. """ for link_id in self._foot_link_ids: self._pybullet_client.changeDynamics( self.quadruped, link_id, restitution=foot_restitution) def SetJointFriction(self, joint_frictions): for knee_joint_id, friction in zip(self._foot_link_ids, joint_frictions): self._pybullet_client.setJointMotorControl2( bodyIndex=self.quadruped, jointIndex=knee_joint_id, controlMode=self._pybullet_client.VELOCITY_CONTROL, targetVelocity=0, force=friction) def GetNumKneeJoints(self): return len(self._foot_link_ids) def SetBatteryVoltage(self, voltage): if self._accurate_motor_model_enabled: self._motor_model.set_voltage(voltage) def SetMotorViscousDamping(self, viscous_damping): if self._accurate_motor_model_enabled: self._motor_model.set_viscous_damping(viscous_damping) def GetTrueObservation(self): observation = [] observation.extend(self.GetTrueMotorAngles()) observation.extend(self.GetTrueMotorVelocities()) observation.extend(self.GetTrueMotorTorques()) observation.extend(self.GetTrueBaseOrientation()) observation.extend(self.GetTrueBaseRollPitchYawRate()) return observation def ReceiveObservation(self): """Receive the observation from sensors. This function is called once per step. The observations are only updated when this function is called. """ self._observation_history.appendleft(self.GetTrueObservation()) self._control_observation = self._GetControlObservation() def _GetDelayedObservation(self, latency): """Get observation that is delayed by the amount specified in latency. Args: latency: The latency (in seconds) of the delayed observation. Returns: observation: The observation which was actually latency seconds ago. """ if latency <= 0 or len(self._observation_history) == 1: observation = self._observation_history[0] else: n_steps_ago = int(latency / self.time_step) if n_steps_ago + 1 >= len(self._observation_history): return self._observation_history[-1] remaining_latency = latency - n_steps_ago * self.time_step blend_alpha = remaining_latency / self.time_step observation = ( (1.0 - blend_alpha) * np.array(self._observation_history[n_steps_ago]) + blend_alpha * np.array(self._observation_history[n_steps_ago + 1])) return observation def _GetPDObservation(self): pd_delayed_observation = self._GetDelayedObservation(self._pd_latency) q = pd_delayed_observation[0:self.num_motors] qdot = pd_delayed_observation[self.num_motors:2 * self.num_motors] return (np.array(q), np.array(qdot)) def _GetControlObservation(self): control_delayed_observation = self._GetDelayedObservation( self._control_latency) return control_delayed_observation def _AddSensorNoise(self, sensor_values, noise_stdev): if noise_stdev <= 0: return sensor_values observation = sensor_values + np.random.normal( scale=noise_stdev, size=sensor_values.shape) return observation def SetControlLatency(self, latency): """Set the latency of the control loop. It measures the duration between sending an action from Nvidia TX2 and receiving the observation from microcontroller. Args: latency: The latency (in seconds) of the control loop. """ self._control_latency = latency def GetControlLatency(self): """Get the control latency. Returns: The latency (in seconds) between when the motor command is sent and when the sensor measurements are reported back to the controller. """ return self._control_latency def SetMotorGains(self, kp, kd): """Set the gains of all motors. These gains are PD gains for motor positional control. kp is the proportional gain and kd is the derivative gain. Args: kp: proportional gain of the motors. kd: derivative gain of the motors. """ self._kp = kp self._kd = kd if self._accurate_motor_model_enabled: self._motor_model.set_motor_gains(kp, kd) def GetMotorGains(self): """Get the gains of the motor. Returns: The proportional gain. The derivative gain. """ return self._kp, self._kd def SetMotorStrengthRatio(self, ratio): """Set the strength of all motors relative to the default value. Args: ratio: The relative strength. A scalar range from 0.0 to 1.0. """ if self._accurate_motor_model_enabled: self._motor_model.set_strength_ratios([ratio] * self.num_motors) def SetMotorStrengthRatios(self, ratios): """Set the strength of each motor relative to the default value. Args: ratios: The relative strength. A numpy array ranging from 0.0 to 1.0. """ if self._accurate_motor_model_enabled: self._motor_model.set_strength_ratios(ratios) def SetTimeSteps(self, action_repeat, simulation_step): """Set the time steps of the control and simulation. Args: action_repeat: The number of simulation steps that the same action is repeated. simulation_step: The simulation time step. """ self.time_step = simulation_step self._action_repeat = action_repeat @property def chassis_link_ids(self): return self._chassis_link_ids