/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2007 Erwin Coumans Motor Demo This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "NN3DWalkers.h" #include #include "btBulletDynamicsCommon.h" #include "LinearMath/btIDebugDraw.h" #include "LinearMath/btAlignedObjectArray.h" class btBroadphaseInterface; class btCollisionShape; class btOverlappingPairCache; class btCollisionDispatcher; class btConstraintSolver; struct btCollisionAlgorithmCreateFunc; class btDefaultCollisionConfiguration; #include "../CommonInterfaces/CommonRigidBodyBase.h" #include "../CommonInterfaces/CommonParameterInterface.h" //TODO: Maybe add pointworldToLocal and AxisWorldToLocal etc. to a helper class btVector3 getPointWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 point); btVector3 getAxisWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 axis); btVector3 getPointLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 point); btVector3 getAxisLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 axis); btTransform getTransformLocalToWorld(btTransform localObjectCenterOfMassTransform, btTransform transform); btTransform getTransformWorldToLocal(btTransform localObjectCenterOfMassTransform, btTransform transform); class NN3DWalkers : public CommonRigidBodyBase { btScalar m_Time; btScalar m_targetAccumulator; btScalar m_targetFrequency; btScalar m_motorStrength; btAlignedObjectArray m_walkers; public: NN3DWalkers(struct GUIHelperInterface* helper) :CommonRigidBodyBase(helper), m_Time(0),m_motorStrength(0.5f),m_targetFrequency(3),m_targetAccumulator(0) { } void initPhysics(); virtual void exitPhysics(); virtual ~NN3DWalkers() { } void spawnWalker(const btVector3& startOffset, bool bFixed); virtual bool keyboardCallback(int key, int state); void setMotorTargets(btScalar deltaTime); void resetCamera() { float dist = 11; float pitch = 52; float yaw = 35; float targetPos[3]={0,0.46,0}; m_guiHelper->resetCamera(dist,pitch,yaw,targetPos[0],targetPos[1],targetPos[2]); } virtual void renderScene(); }; static NN3DWalkers* nn3DWalkers = NULL; #ifndef SIMD_PI_4 #define SIMD_PI_4 0.5 * SIMD_HALF_PI #endif #ifndef SIMD_PI_8 #define SIMD_PI_8 0.25 * SIMD_HALF_PI #endif void* GROUND_ID = (void*)1; bool RANDOM_MOVEMENT = false; #define NUM_LEGS 6 #define BODYPART_COUNT (2 * NUM_LEGS + 1) #define JOINT_COUNT (BODYPART_COUNT - 1) class NNWalker { btDynamicsWorld* m_ownerWorld; btCollisionShape* m_shapes[BODYPART_COUNT]; btRigidBody* m_bodies[BODYPART_COUNT]; btTypedConstraint* m_joints[JOINT_COUNT]; std::map m_body_index_map; bool m_touch_sensors[BODYPART_COUNT]; float m_sensory_motor_weights[BODYPART_COUNT*JOINT_COUNT]; btRigidBody* localCreateRigidBody (btScalar mass, const btTransform& startTransform, btCollisionShape* shape) { bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) shape->calculateLocalInertia(mass,localInertia); btDefaultMotionState* motionState = new btDefaultMotionState(startTransform); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,motionState,shape,localInertia); btRigidBody* body = new btRigidBody(rbInfo); m_ownerWorld->addRigidBody(body); return body; } public: NNWalker(btDynamicsWorld* ownerWorld, const btVector3& positionOffset, bool bFixed) : m_ownerWorld (ownerWorld) { btVector3 vUp(0, 1, 0); // up in local reference frame //initialize random weights for(int i = 0;i < BODYPART_COUNT;i++){ for(int j = 0;j < JOINT_COUNT;j++){ m_sensory_motor_weights[i+j*BODYPART_COUNT] = ((double) rand() / (RAND_MAX))*2.0f-1.0f; } } // // Setup geometry // float rootBodyRadius = 0.25f; float rootBodyHeight = 0.1f; float legRadius = 0.1f; float legLength = 0.45f; float foreLegLength = 0.75f; float foreLegRadius = 0.08f; m_shapes[0] = new btCapsuleShape(btScalar(rootBodyRadius), btScalar(rootBodyHeight)); int i; for ( i=0; igetWorldTransform(), getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA)); hingeC = new btHingeConstraint(*m_bodies[0], *m_bodies[1+2*i], localA, localB); hingeC->setLimit(btScalar(-0.75 * SIMD_PI_4), btScalar(SIMD_PI_8)); //hingeC->setLimit(btScalar(-0.1), btScalar(0.1)); m_joints[2*i] = hingeC; m_ownerWorld->addConstraint(m_joints[2*i], true); // knee joints localA.setIdentity(); localB.setIdentity(); localC.setIdentity(); localA.getBasis().setEulerZYX(0,-footAngle,0); localA.setOrigin(btVector3(btScalar(footXUnitPosition*(rootBodyRadius+legLength)), btScalar(0.), btScalar(footYUnitPosition*(rootBodyRadius+legLength)))); localB = getTransformWorldToLocal(m_bodies[1+2*i]->getWorldTransform(), getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA)); localC = getTransformWorldToLocal(m_bodies[2+2*i]->getWorldTransform(), getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA)); hingeC = new btHingeConstraint(*m_bodies[1+2*i], *m_bodies[2+2*i], localB, localC); //hingeC->setLimit(btScalar(-0.01), btScalar(0.01)); hingeC->setLimit(btScalar(-SIMD_PI_8), btScalar(0.2)); m_joints[1+2*i] = hingeC; m_ownerWorld->addConstraint(m_joints[1+2*i], true); } // Setup some damping on the m_bodies for (i = 0; i < BODYPART_COUNT; ++i) { m_bodies[i]->setDamping(0.05, 0.85); m_bodies[i]->setDeactivationTime(0.8); //m_bodies[i]->setSleepingThresholds(1.6, 2.5); m_bodies[i]->setSleepingThresholds(0.5f, 0.5f); m_bodies[i]->setUserPointer(this); m_body_index_map.insert(std::pair(m_bodies[i],i)); } } virtual ~NNWalker () { int i; // Remove all constraints for ( i = 0; i < JOINT_COUNT; ++i) { m_ownerWorld->removeConstraint(m_joints[i]); delete m_joints[i]; m_joints[i] = 0; } // Remove all bodies and shapes for ( i = 0; i < BODYPART_COUNT; ++i) { m_ownerWorld->removeRigidBody(m_bodies[i]); delete m_bodies[i]->getMotionState(); delete m_bodies[i]; m_bodies[i] = 0; delete m_shapes[i]; m_shapes[i] = 0; } } btTypedConstraint** getJoints() {return &m_joints[0];} void setTouchSensor(void* bodyPointer){ m_touch_sensors[m_body_index_map.at(bodyPointer)] = true; } void clearTouchSensors(){ for(int i = 0 ; i < BODYPART_COUNT;i++){ m_touch_sensors[i] = false; } } bool getTouchSensor(int i){ return m_touch_sensors[i];} const float* getSensoryMotorWeights() const { return m_sensory_motor_weights; } }; void legMotorPreTickCallback (btDynamicsWorld *world, btScalar timeStep) { NN3DWalkers* motorDemo = (NN3DWalkers*)world->getWorldUserInfo(); motorDemo->setMotorTargets(timeStep); } bool legContactProcessedCallback(btManifoldPoint& cp, void* body0, void* body1) { btCollisionObject* o1 = static_cast(body0); btCollisionObject* o2 = static_cast(body1); void* ID1 = o1->getUserPointer(); void* ID2 = o2->getUserPointer(); if (ID2 != GROUND_ID || ID1 != GROUND_ID) { // Make a circle with a 0.9 radius at (0,0,0) // with RGB color (1,0,0). if(nn3DWalkers->m_dynamicsWorld->getDebugDrawer() != NULL) nn3DWalkers->m_dynamicsWorld->getDebugDrawer()->drawSphere(cp.getPositionWorldOnA(), 0.1, btVector3(1., 0., 0.)); if(ID1 != GROUND_ID){ ((NNWalker*)ID1)->setTouchSensor(o1); } if(ID2 != GROUND_ID){ ((NNWalker*)ID2)->setTouchSensor(o2); } } return false; } void NN3DWalkers::initPhysics() { gContactProcessedCallback = legContactProcessedCallback; m_guiHelper->setUpAxis(1); // Setup the basic world m_Time = 0; createEmptyDynamicsWorld(); m_dynamicsWorld->setInternalTickCallback(legMotorPreTickCallback,this,true); m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); m_targetFrequency = 3; // new SIMD solver for joints clips accumulated impulse, so the new limits for the motor // should be (numberOfsolverIterations * oldLimits) m_motorStrength = 0.05f * m_dynamicsWorld->getSolverInfo().m_numIterations; { // create a slider to change the motor update frequency SliderParams slider("Motor update frequency", &m_targetFrequency); slider.m_minVal = 0; slider.m_maxVal = 10; slider.m_clampToNotches = false; m_guiHelper->getParameterInterface()->registerSliderFloatParameter( slider); } { // create a slider to change the motor torque SliderParams slider("Motor force", &m_motorStrength); slider.m_minVal = 1; slider.m_maxVal = 50; slider.m_clampToNotches = false; m_guiHelper->getParameterInterface()->registerSliderFloatParameter( slider); } // Setup a big ground box { btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(200.),btScalar(10.),btScalar(200.))); m_collisionShapes.push_back(groundShape); btTransform groundTransform; groundTransform.setIdentity(); groundTransform.setOrigin(btVector3(0,-10,0)); btRigidBody* ground = createRigidBody(btScalar(0.),groundTransform,groundShape); ground->setFriction(5); ground->setUserPointer(GROUND_ID); } for(int i = 0; i < 5 ; i++){ for(int j = 0; j < 5; j++){ // Spawn one walker btVector3 spacing(10.0f,0.8f,10.0f); btVector3 startOffset(spacing * btVector3(i,0,j)); spawnWalker(startOffset, false); } } m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld); } void NN3DWalkers::spawnWalker(const btVector3& startOffset, bool bFixed) { NNWalker* walker = new NNWalker(m_dynamicsWorld, startOffset, bFixed); m_walkers.push_back(walker); } void NN3DWalkers::setMotorTargets(btScalar deltaTime) { float ms = deltaTime*1000000.; float minFPS = 1000000.f/60.f; if (ms > minFPS) ms = minFPS; m_Time += ms; m_targetAccumulator +=ms; if(m_targetAccumulator >= 1000000.0f /((double)m_targetFrequency)) { m_targetAccumulator = 0; // // set per-frame sinusoidal position targets using angular motor (hacky?) // for (int r=0; r(m_walkers[r]->getJoints()[i]); if(RANDOM_MOVEMENT){ targetAngle = ((double) rand() / (RAND_MAX));//0.5 * (1 + sin(2 * SIMD_PI * fTargetPercent+ i* SIMD_PI/NUM_LEGS)); } else{ // accumulate sensor inputs with weights for(int j = 0; j < JOINT_COUNT;j++){ targetAngle += m_walkers[r]->getSensoryMotorWeights()[i+j*BODYPART_COUNT] * m_walkers[r]->getTouchSensor(i); } // apply the activation function targetAngle = (tanh(targetAngle)+1.0f)*0.5f; } btScalar targetLimitAngle = hingeC->getLowerLimit() + targetAngle * (hingeC->getUpperLimit() - hingeC->getLowerLimit()); btScalar currentAngle = hingeC->getHingeAngle(); btScalar angleError = targetLimitAngle - currentAngle; btScalar desiredAngularVel = 1000000.f * angleError/ms; hingeC->enableAngularMotor(true, desiredAngularVel, m_motorStrength); } // clear sensor signals after usage m_walkers[r]->clearTouchSensors(); } } } bool NN3DWalkers::keyboardCallback(int key, int state) { switch (key) { case '[': m_motorStrength /= 1.1f; return true; break; case ']': m_motorStrength *= 1.1f; return true; break; default: break; } return false; } void NN3DWalkers::exitPhysics() { int i; for (i=0;isyncPhysicsToGraphics(m_dynamicsWorld); m_guiHelper->render(m_dynamicsWorld); debugDraw(m_dynamicsWorld->getDebugDrawer()->getDebugMode()); } class CommonExampleInterface* ET_NN3DWalkersCreateFunc(struct CommonExampleOptions& options) { nn3DWalkers = new NN3DWalkers(options.m_guiHelper); return nn3DWalkers; } btVector3 getPointWorldToLocal( btTransform localObjectCenterOfMassTransform, btVector3 point) { return localObjectCenterOfMassTransform.inverse() * point; // transforms the point from the world frame into the local frame } btVector3 getPointLocalToWorld( btTransform localObjectCenterOfMassTransform, btVector3 point) { return localObjectCenterOfMassTransform * point; // transforms the point from the world frame into the local frame } btVector3 getAxisWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 axis) { btTransform local1 = localObjectCenterOfMassTransform.inverse(); // transforms the axis from the local frame into the world frame btVector3 zero(0,0,0); local1.setOrigin(zero); return local1 * axis; } btVector3 getAxisLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 axis) { btTransform local1 = localObjectCenterOfMassTransform; // transforms the axis from the local frame into the world frame btVector3 zero(0,0,0); local1.setOrigin(zero); return local1 * axis; } btTransform getTransformWorldToLocal(btTransform localObjectCenterOfMassTransform, btTransform transform) { return localObjectCenterOfMassTransform.inverse() * transform; // transforms the axis from the local frame into the world frame } btTransform getTransformLocalToWorld(btTransform localObjectCenterOfMassTransform, btTransform transform) { return localObjectCenterOfMassTransform * transform; // transforms the axis from the local frame into the world frame }