/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ //Ignore this USE_PARALLEL_DISPATCHER define, it is for future optimizations //#define USE_PARALLEL_DISPATCHER 1 /// September 2006: ForkLiftDemo is work in progress, this file is mostly just a placeholder /// This ForkLiftDemo file is very early in development, please check it later #include "CcdPhysicsEnvironment.h" #include "ParallelPhysicsEnvironment.h" #include "CcdPhysicsController.h" #include "btBulletDynamicsCommon.h" #include "PHY_IVehicle.h" #include "ParallelIslandDispatcher.h" #include "LinearMath/btQuickprof.h" #include "LinearMath/btIDebugDraw.h" #include "GLDebugDrawer.h" #include "PHY_Pro.h" #include "BMF_Api.h" #include //printf debugging float deltaTime = 1.f/60.f; #include "GL_ShapeDrawer.h" #include "GlutStuff.h" #include "ForkLiftDemo.h" const int maxProxies = 32766; const int maxOverlap = 65535; DefaultMotionState wheelMotionState[4]; ///PHY_IVehicle is the interface behind the constraint that implements the raycast vehicle (WrapperVehicle which holds a btRaycastVehicle) ///notice that for higher-quality slow-moving vehicles, another approach might be better ///implementing explicit hinged-wheel constraints with cylinder collision, rather then raycasts PHY_IVehicle* gVehicleConstraint=0; float gEngineForce = 0.f; float maxEngineForce = 1000.f; float gVehicleSteering = 0.f; float steeringIncrement = 0.1f; float steeringClamp = 0.3f; float wheelRadius = 0.5f; float wheelWidth = 0.2f; float wheelFriction = 100.f; float suspensionStiffness = 10.f; float suspensionDamping = 1.3f; float suspensionCompression = 2.4f; float rollInfluence = 0.1f; btVector3 wheelDirectionCS0(0,-1,0); btVector3 wheelAxleCS(1,0,0); btScalar suspensionRestLength(0.6); #define CUBE_HALF_EXTENTS 1 //////////////////////////////////// GLDebugDrawer debugDrawer; int main(int argc,char** argv) { ForkLiftDemo* vehicleDemo = new ForkLiftDemo; vehicleDemo->setupPhysics(); return glutmain(argc, argv,640,480,"Bullet Vehicle Demo. http://www.continuousphysics.com/Bullet/phpBB2/", vehicleDemo); } ForkLiftDemo::ForkLiftDemo() : m_carChassis(0), m_cameraHeight(4.f), m_minCameraDistance(3.f), m_maxCameraDistance(10.f) { m_cameraPosition = btVector3(30,30,30); } void ForkLiftDemo::setupPhysics() { btCollisionDispatcher* dispatcher = new btCollisionDispatcher(); //ParallelIslandDispatcher* dispatcher2 = new ParallelIslandDispatcher(); btVector3 worldAabbMin(-30000,-30000,-30000); btVector3 worldAabbMax(30000,30000,30000); btOverlappingPairCache* broadphase = new btAxisSweep3(worldAabbMin,worldAabbMax,maxProxies); //OverlappingPairCache* broadphase = new btSimpleBroadphase(maxProxies,maxOverlap); #ifdef USE_PARALLEL_DISPATCHER m_physicsEnvironmentPtr = new ParallelPhysicsEnvironment(dispatcher2,broadphase); #else m_physicsEnvironmentPtr = new CcdPhysicsEnvironment(dispatcher,broadphase); #endif m_physicsEnvironmentPtr->setDeactivationTime(2.f); m_physicsEnvironmentPtr->setDebugDrawer(&debugDrawer); m_physicsEnvironmentPtr->setGravity(0,-10,0);//0,0);//-10,0); int i; btCollisionShape* groundShape = new btBoxShape(btVector3(50,3,50)); #define USE_TRIMESH_GROUND 1 #ifdef USE_TRIMESH_GROUND const float TRIANGLE_SIZE=20.f; //create a triangle-mesh ground int vertStride = sizeof(btVector3); int indexStride = 3*sizeof(int); const int NUM_VERTS_X = 50; const int NUM_VERTS_Y = 50; const int totalVerts = NUM_VERTS_X*NUM_VERTS_Y; const int totalTriangles = 2*(NUM_VERTS_X-1)*(NUM_VERTS_Y-1); btVector3* gVertices = new btVector3[totalVerts]; int* gIndices = new int[totalTriangles*3]; for ( i=0;iSyncMotionStates(0.f); /// create vehicle { int constraintId; constraintId =m_physicsEnvironmentPtr->createConstraint( m_carChassis,0, PHY_VEHICLE_CONSTRAINT, 0,0,0, 0,0,0); ///never deactivate the vehicle m_carChassis->getRigidBody()->SetActivationState(DISABLE_DEACTIVATION); gVehicleConstraint = m_physicsEnvironmentPtr->getVehicleConstraint(constraintId); btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),0,2*CUBE_HALF_EXTENTS-wheelRadius); btRaycastVehicle::btVehicleTuning tuning; bool isFrontWheel=true; int rightIndex = 0; int upIndex = 1; int forwardIndex = 2; gVehicleConstraint->setCoordinateSystem(rightIndex,upIndex,forwardIndex); gVehicleConstraint->addWheel(&wheelMotionState[0], (PHY__Vector3&)connectionPointCS0, (PHY__Vector3&)wheelDirectionCS0,(PHY__Vector3&)wheelAxleCS,suspensionRestLength,wheelRadius,isFrontWheel); connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),0,2*CUBE_HALF_EXTENTS-wheelRadius); gVehicleConstraint->addWheel(&wheelMotionState[1], (PHY__Vector3&)connectionPointCS0, (PHY__Vector3&)wheelDirectionCS0,(PHY__Vector3&)wheelAxleCS,suspensionRestLength,wheelRadius,isFrontWheel); connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),0,-2*CUBE_HALF_EXTENTS+wheelRadius); isFrontWheel = false; gVehicleConstraint->addWheel(&wheelMotionState[2], (PHY__Vector3&)connectionPointCS0, (PHY__Vector3&)wheelDirectionCS0,(PHY__Vector3&)wheelAxleCS,suspensionRestLength,wheelRadius,isFrontWheel); connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),0,-2*CUBE_HALF_EXTENTS+wheelRadius); gVehicleConstraint->addWheel(&wheelMotionState[3], (PHY__Vector3&)connectionPointCS0, (PHY__Vector3&)wheelDirectionCS0,(PHY__Vector3&)wheelAxleCS,suspensionRestLength,wheelRadius,isFrontWheel); gVehicleConstraint->SetSuspensionStiffness(suspensionStiffness,0); gVehicleConstraint->SetSuspensionStiffness(suspensionStiffness,1); gVehicleConstraint->SetSuspensionStiffness(suspensionStiffness,2); gVehicleConstraint->SetSuspensionStiffness(suspensionStiffness,3); gVehicleConstraint->SetSuspensionDamping(suspensionDamping,0); gVehicleConstraint->SetSuspensionDamping(suspensionDamping,1); gVehicleConstraint->SetSuspensionDamping(suspensionDamping,2); gVehicleConstraint->SetSuspensionDamping(suspensionDamping,3); gVehicleConstraint->SetSuspensionCompression(suspensionCompression,0); gVehicleConstraint->SetSuspensionCompression(suspensionCompression,1); gVehicleConstraint->SetSuspensionCompression(suspensionCompression,2); gVehicleConstraint->SetSuspensionCompression(suspensionCompression,3); gVehicleConstraint->SetWheelFriction(wheelFriction,0); gVehicleConstraint->SetWheelFriction(wheelFriction,1); gVehicleConstraint->SetWheelFriction(wheelFriction,2); gVehicleConstraint->SetWheelFriction(wheelFriction,3); } setCameraDistance(26.f); } //to be implemented by the demo void ForkLiftDemo::renderme() { updateCamera(); debugDrawer.setDebugMode(getDebugMode()); float m[16]; int i; btCylinderShapeX wheelShape(btVector3(wheelWidth,wheelRadius,wheelRadius)); btVector3 wheelColor(1,0,0); for (i=0;i<4;i++) { //draw wheels (cylinders) wheelMotionState[i].m_worldTransform.getOpenGLMatrix(m); GL_ShapeDrawer::drawOpenGL(m,&wheelShape,wheelColor,getDebugMode()); } DemoApplication::renderme(); } void ForkLiftDemo::clientMoveAndDisplay() { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); { int steerWheelIndex = 2; gVehicleConstraint->applyEngineForce(gEngineForce,steerWheelIndex); steerWheelIndex = 3; gVehicleConstraint->applyEngineForce(gEngineForce,steerWheelIndex); steerWheelIndex = 0; gVehicleConstraint->setSteeringValue(gVehicleSteering,steerWheelIndex); steerWheelIndex = 1; gVehicleConstraint->setSteeringValue(gVehicleSteering,steerWheelIndex); } m_physicsEnvironmentPtr->proceedDeltaTime(0.f,deltaTime); #ifdef USE_QUICKPROF btProfiler::beginBlock("render"); #endif //USE_QUICKPROF renderme(); #ifdef USE_QUICKPROF btProfiler::endBlock("render"); #endif glFlush(); glutSwapBuffers(); } void ForkLiftDemo::displayCallback(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); m_physicsEnvironmentPtr->UpdateAabbs(deltaTime); //draw contactpoints m_physicsEnvironmentPtr->CallbackTriggers(); renderme(); glFlush(); glutSwapBuffers(); } void ForkLiftDemo::clientResetScene() { gEngineForce = 0.f; gVehicleSteering = 0.f; m_carChassis->setPosition(0,0,0); m_carChassis->setOrientation(0,0,0,1); } void ForkLiftDemo::specialKeyboard(int key, int x, int y) { printf("key = %i x=%i y=%i\n",key,x,y); switch (key) { case GLUT_KEY_LEFT : { gVehicleSteering += steeringIncrement; if ( gVehicleSteering > steeringClamp) gVehicleSteering = steeringClamp; break; } case GLUT_KEY_RIGHT : { gVehicleSteering -= steeringIncrement; if ( gVehicleSteering < -steeringClamp) gVehicleSteering = -steeringClamp; break; } case GLUT_KEY_UP : { gEngineForce = -maxEngineForce; break; } case GLUT_KEY_DOWN : { gEngineForce = maxEngineForce; break; } default: DemoApplication::specialKeyboard(key,x,y); break; } // glutPostRedisplay(); } void ForkLiftDemo::updateCamera() { glMatrixMode(GL_PROJECTION); glLoadIdentity(); //look at the vehicle m_cameraTargetPosition = m_carChassis->getRigidBody()->m_worldTransform.getOrigin(); //interpolate the camera height m_cameraPosition[1] = (15.0*m_cameraPosition[1] + m_cameraTargetPosition[1] + m_cameraHeight)/16.0; btVector3 camToObject = m_cameraTargetPosition - m_cameraPosition; //keep distance between min and max distance float cameraDistance = camToObject.length(); float correctionFactor = 0.f; if (cameraDistance < m_minCameraDistance) { correctionFactor = 0.15*(m_minCameraDistance-cameraDistance)/cameraDistance; } if (cameraDistance > m_maxCameraDistance) { correctionFactor = 0.15*(m_maxCameraDistance-cameraDistance)/cameraDistance; } m_cameraPosition -= correctionFactor*camToObject; //update OpenGL camera settings glFrustum(-1.0, 1.0, -1.0, 1.0, 1.0, 10000.0); gluLookAt(m_cameraPosition[0],m_cameraPosition[1],m_cameraPosition[2], m_cameraTargetPosition[0],m_cameraTargetPosition[1], m_cameraTargetPosition[2], m_cameraUp.getX(),m_cameraUp.getY(),m_cameraUp.getZ()); glMatrixMode(GL_MODELVIEW); }