/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "CcdPhysicsEnvironment.h" #include "CcdPhysicsController.h" #include #include "LinearMath/btTransform.h" #include "BulletDynamics/Dynamics/btRigidBody.h" #include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h" #include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h" #include "BulletCollision/BroadphaseCollision/btAxisSweep3.h" #include "BulletCollision/CollisionDispatch/btCollisionWorld.h" #include "BulletCollision/CollisionShapes/btConvexShape.h" #include "BulletCollision/CollisionShapes/btConeShape.h" #include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h" #include "BulletCollision/BroadphaseCollision/btDispatcher.h" #include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h" #include "BulletCollision/CollisionShapes/btTriangleMeshShape.h" #include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h" //profiling/timings #include "LinearMath/btQuickprof.h" #include "LinearMath/btIDebugDraw.h" #include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h" #include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h" #include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h" #include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h" #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h" #include "PHY_IMotionState.h" #include "BulletCollision/CollisionDispatch/btEmptyCollisionAlgorithm.h" #include "BulletCollision/CollisionShapes/btSphereShape.h" bool useIslands = true; #ifdef NEW_BULLET_VEHICLE_SUPPORT #include "BulletDynamics/Vehicle/btRaycastVehicle.h" #include "BulletDynamics/Vehicle/btVehicleRaycaster.h" #include "BulletDynamics/Vehicle/btWheelInfo.h" #include "PHY_IVehicle.h" btRaycastVehicle::btVehicleTuning gTuning; #endif //NEW_BULLET_VEHICLE_SUPPORT #include "LinearMath/btAabbUtil2.h" #include "BulletDynamics/ConstraintSolver/btConstraintSolver.h" #include "BulletDynamics/ConstraintSolver/btPoint2PointConstraint.h" #include "BulletDynamics/ConstraintSolver/btHingeConstraint.h" #include "BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h" //#include "BroadphaseCollision/QueryDispatcher.h" //#include "BroadphaseCollision/QueryBox.h" //todo: change this to allow dynamic registration of types! #ifdef WIN32 void DrawRasterizerLine(const float* from,const float* to,int color); #endif #include "BulletDynamics/ConstraintSolver/btContactConstraint.h" #include #ifdef NEW_BULLET_VEHICLE_SUPPORT class WrapperVehicle : public PHY_IVehicle { btRaycastVehicle* m_vehicle; PHY_IPhysicsController* m_chassis; public: WrapperVehicle(btRaycastVehicle* vehicle,PHY_IPhysicsController* chassis) :m_vehicle(vehicle), m_chassis(chassis) { } btRaycastVehicle* GetVehicle() { return m_vehicle; } PHY_IPhysicsController* GetChassis() { return m_chassis; } virtual void addWheel( PHY_IMotionState* motionState, PHY__Vector3 connectionPoint, PHY__Vector3 downDirection, PHY__Vector3 axleDirection, float suspensionRestLength, float wheelRadius, bool hasSteering ) { btVector3 connectionPointCS0(connectionPoint[0],connectionPoint[1],connectionPoint[2]); btVector3 wheelDirectionCS0(downDirection[0],downDirection[1],downDirection[2]); btVector3 wheelAxle(axleDirection[0],axleDirection[1],axleDirection[2]); btWheelInfo& info = m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxle, suspensionRestLength,wheelRadius,gTuning,hasSteering); info.m_clientInfo = motionState; } void SyncWheels() { int numWheels = getNumWheels(); int i; for (i=0;igetWheelInfo(i); PHY_IMotionState* motionState = (PHY_IMotionState*)info.m_clientInfo ; m_vehicle->updateWheelTransform(i); btTransform trans = m_vehicle->getWheelTransformWS(i); btQuaternion orn = trans.getRotation(); const btVector3& pos = trans.getOrigin(); motionState->setWorldOrientation(orn.x(),orn.y(),orn.z(),orn[3]); motionState->setWorldPosition(pos.x(),pos.y(),pos.z()); } } virtual int getNumWheels() const { return m_vehicle->getNumWheels(); } virtual void GetWheelPosition(int wheelIndex,float& posX,float& posY,float& posZ) const { btTransform trans = m_vehicle->getWheelTransformWS(wheelIndex); posX = trans.getOrigin().x(); posY = trans.getOrigin().y(); posZ = trans.getOrigin().z(); } virtual void GetWheelOrientationQuaternion(int wheelIndex,float& quatX,float& quatY,float& quatZ,float& quatW) const { btTransform trans = m_vehicle->getWheelTransformWS(wheelIndex); btQuaternion quat = trans.getRotation(); btMatrix3x3 orn2(quat); quatX = trans.getRotation().x(); quatY = trans.getRotation().y(); quatZ = trans.getRotation().z(); quatW = trans.getRotation()[3]; //printf("test"); } virtual float GetWheelRotation(int wheelIndex) const { float rotation = 0.f; if ((wheelIndex>=0) && (wheelIndex< m_vehicle->getNumWheels())) { btWheelInfo& info = m_vehicle->getWheelInfo(wheelIndex); rotation = info.m_rotation; } return rotation; } virtual int getUserConstraintId() const { return m_vehicle->getUserConstraintId(); } virtual int getUserConstraintType() const { return m_vehicle->getUserConstraintType(); } virtual void setSteeringValue(float steering,int wheelIndex) { m_vehicle->setSteeringValue(steering,wheelIndex); } virtual void applyEngineForce(float force,int wheelIndex) { m_vehicle->applyEngineForce(force,wheelIndex); } virtual void ApplyBraking(float braking,int wheelIndex) { if ((wheelIndex>=0) && (wheelIndex< m_vehicle->getNumWheels())) { btWheelInfo& info = m_vehicle->getWheelInfo(wheelIndex); info.m_brake = braking; } } virtual void SetWheelFriction(float friction,int wheelIndex) { if ((wheelIndex>=0) && (wheelIndex< m_vehicle->getNumWheels())) { btWheelInfo& info = m_vehicle->getWheelInfo(wheelIndex); info.m_frictionSlip = friction; } } virtual void SetSuspensionStiffness(float suspensionStiffness,int wheelIndex) { if ((wheelIndex>=0) && (wheelIndex< m_vehicle->getNumWheels())) { btWheelInfo& info = m_vehicle->getWheelInfo(wheelIndex); info.m_suspensionStiffness = suspensionStiffness; } } virtual void SetSuspensionDamping(float suspensionDamping,int wheelIndex) { if ((wheelIndex>=0) && (wheelIndex< m_vehicle->getNumWheels())) { btWheelInfo& info = m_vehicle->getWheelInfo(wheelIndex); info.m_wheelsDampingRelaxation = suspensionDamping; } } virtual void SetSuspensionCompression(float suspensionCompression,int wheelIndex) { if ((wheelIndex>=0) && (wheelIndex< m_vehicle->getNumWheels())) { btWheelInfo& info = m_vehicle->getWheelInfo(wheelIndex); info.m_wheelsDampingCompression = suspensionCompression; } } virtual void SetRollInfluence(float rollInfluence,int wheelIndex) { if ((wheelIndex>=0) && (wheelIndex< m_vehicle->getNumWheels())) { btWheelInfo& info = m_vehicle->getWheelInfo(wheelIndex); info.m_rollInfluence = rollInfluence; } } virtual void setCoordinateSystem(int rightIndex,int upIndex,int forwardIndex) { m_vehicle->setCoordinateSystem(rightIndex,upIndex,forwardIndex); } }; #endif //NEW_BULLET_VEHICLE_SUPPORT static void DrawAabb(btIDebugDraw* debugDrawer,const btVector3& from,const btVector3& to,const btVector3& color) { btVector3 halfExtents = (to-from)* 0.5f; btVector3 center = (to+from) *0.5f; int i,j; btVector3 edgecoord(1.f,1.f,1.f),pa,pb; for (i=0;i<4;i++) { for (j=0;j<3;j++) { pa = btVector3(edgecoord[0]*halfExtents[0], edgecoord[1]*halfExtents[1], edgecoord[2]*halfExtents[2]); pa+=center; int othercoord = j%3; edgecoord[othercoord]*=-1.f; pb = btVector3(edgecoord[0]*halfExtents[0], edgecoord[1]*halfExtents[1], edgecoord[2]*halfExtents[2]); pb+=center; debugDrawer->drawLine(pa,pb,color); } edgecoord = btVector3(-1.f,-1.f,-1.f); if (i<3) edgecoord[i]*=-1.f; } } CcdPhysicsEnvironment::CcdPhysicsEnvironment(btDispatcher* dispatcher,btOverlappingPairCache* pairCache) : m_numIterations(10), m_numTimeSubSteps(1), m_ccdMode(0), m_solverType(-1), m_profileTimings(0), m_enableSatCollisionDetection(false), m_scalingPropagated(false) { for (int i=0;igetRigidBody(); //this m_userPointer is just used for triggers, see CallbackTriggers body->m_internalOwner = ctrl; body->setGravity( m_gravity ); m_controllers.push_back(ctrl); m_collisionWorld->addCollisionObject(body,ctrl->GetCollisionFilterGroup(),ctrl->GetCollisionFilterMask()); assert(body->m_broadphaseHandle); btCollisionShape* shapeinterface = ctrl->getCollisionShape(); assert(shapeinterface); const btTransform& t = ctrl->getRigidBody()->getCenterOfMassTransform(); body->m_cachedInvertedWorldTransform = body->m_worldTransform.inverse(); btPoint3 minAabb,maxAabb; shapeinterface->getAabb(t,minAabb,maxAabb); float timeStep = 0.02f; //extent it with the motion btVector3 linMotion = body->getLinearVelocity()*timeStep; float maxAabbx = maxAabb.getX(); float maxAabby = maxAabb.getY(); float maxAabbz = maxAabb.getZ(); float minAabbx = minAabb.getX(); float minAabby = minAabb.getY(); float minAabbz = minAabb.getZ(); if (linMotion.x() > 0.f) maxAabbx += linMotion.x(); else minAabbx += linMotion.x(); if (linMotion.y() > 0.f) maxAabby += linMotion.y(); else minAabby += linMotion.y(); if (linMotion.z() > 0.f) maxAabbz += linMotion.z(); else minAabbz += linMotion.z(); minAabb = btVector3(minAabbx,minAabby,minAabbz); maxAabb = btVector3(maxAabbx,maxAabby,maxAabbz); } void CcdPhysicsEnvironment::removeCcdPhysicsController(CcdPhysicsController* ctrl) { //also remove constraint { std::vector::iterator i; for (i=m_constraints.begin(); !(i==m_constraints.end()); i++) { btTypedConstraint* constraint = (*i); if ((&constraint->getRigidBodyA() == ctrl->getRigidBody() || (&constraint->getRigidBodyB() == ctrl->getRigidBody()))) { removeConstraint(constraint->getUserConstraintId()); //only 1 constraint per constroller break; } } } { std::vector::iterator i; for (i=m_constraints.begin(); !(i==m_constraints.end()); i++) { btTypedConstraint* constraint = (*i); if ((&constraint->getRigidBodyA() == ctrl->getRigidBody() || (&constraint->getRigidBodyB() == ctrl->getRigidBody()))) { removeConstraint(constraint->getUserConstraintId()); //only 1 constraint per constroller break; } } } m_collisionWorld->removeCollisionObject(ctrl->getRigidBody()); { std::vector::iterator i = std::find(m_controllers.begin(), m_controllers.end(), ctrl); if (!(i == m_controllers.end())) { std::swap(*i, m_controllers.back()); m_controllers.pop_back(); } } //remove it from the triggers { std::vector::iterator i = std::find(m_triggerControllers.begin(), m_triggerControllers.end(), ctrl); if (!(i == m_triggerControllers.end())) { std::swap(*i, m_triggerControllers.back()); m_triggerControllers.pop_back(); } } } void CcdPhysicsEnvironment::beginFrame() { } bool CcdPhysicsEnvironment::proceedDeltaTime(double curTime,float timeStep) { //don't simulate without timesubsteps if (m_numTimeSubSteps<1) return true; //printf("proceedDeltaTime\n"); #ifdef USE_QUICKPROF //toggle btProfiler if ( m_debugDrawer && m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_ProfileTimings) { if (!m_profileTimings) { m_profileTimings = 1; // To disable profiling, simply comment out the following line. static int counter = 0; char filename[128]; sprintf(filename,"quickprof_bullet_timings%i.csv",counter++); btProfiler::init(filename, btProfiler::BLOCK_CYCLE_SECONDS);//BLOCK_TOTAL_MICROSECONDS } } else { if (m_profileTimings) { m_profileTimings = 0; btProfiler::destroy(); } } #endif //USE_QUICKPROF if (!btFuzzyZero(timeStep)) { { //do the kinematic calculation here, over the full timestep std::vector::iterator i; for (i=m_controllers.begin(); !(i==m_controllers.end()); i++) { CcdPhysicsController* ctrl = *i; btTransform predictedTrans; btRigidBody* body = ctrl->getRigidBody(); if (body->GetActivationState() != ISLAND_SLEEPING) { if (body->IsStatic()) { //to calculate velocities next frame body->saveKinematicState(timeStep); } } } } int i; float subTimeStep = timeStep / float(m_numTimeSubSteps); for (i=0;im_numTimeSubSteps;i++) { proceedDeltaTimeOneStep(subTimeStep); } } else { //todo: interpolate } return true; } /// Perform an integration step of duration 'timeStep'. bool CcdPhysicsEnvironment::proceedDeltaTimeOneStep(float timeStep) { //printf("CcdPhysicsEnvironment::proceedDeltaTime\n"); if (btFuzzyZero(timeStep)) return true; if (m_debugDrawer) { gDisableDeactivation = (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_NoDeactivation); } #ifdef USE_QUICKPROF btProfiler::beginBlock("SyncMotionStates"); #endif //USE_QUICKPROF //this is needed because scaling is not known in advance, and scaling has to propagate to the shape if (!m_scalingPropagated) { SyncMotionStates(timeStep); m_scalingPropagated = true; } #ifdef USE_QUICKPROF btProfiler::endBlock("SyncMotionStates"); btProfiler::beginBlock("predictIntegratedTransform"); #endif //USE_QUICKPROF { // std::vector::iterator i; int k; for (k=0;kgetRigidBody(); body->m_cachedInvertedWorldTransform = body->m_worldTransform.inverse(); if (body->IsActive()) { if (!body->IsStatic()) { body->applyForces( timeStep); body->integrateVelocities( timeStep); body->predictIntegratedTransform(timeStep,body->m_interpolationWorldTransform); } } } } #ifdef USE_QUICKPROF btProfiler::endBlock("predictIntegratedTransform"); #endif //USE_QUICKPROF btOverlappingPairCache* scene = m_collisionWorld->getPairCache(); // // collision detection (?) // #ifdef USE_QUICKPROF btProfiler::beginBlock("dispatchAllCollisionPairs"); #endif //USE_QUICKPROF int numsubstep = m_numIterations; btDispatcherInfo dispatchInfo; dispatchInfo.m_timeStep = timeStep; dispatchInfo.m_stepCount = 0; dispatchInfo.m_enableSatConvex = m_enableSatCollisionDetection; dispatchInfo.m_debugDraw = this->m_debugDrawer; scene->refreshOverlappingPairs(); getCollisionWorld()->getDispatcher()->dispatchAllCollisionPairs(scene,dispatchInfo); #ifdef USE_QUICKPROF btProfiler::endBlock("dispatchAllCollisionPairs"); #endif //USE_QUICKPROF m_islandManager->updateActivationState(getCollisionWorld(),getCollisionWorld()->getDispatcher()); { int i; int numConstraints = m_constraints.size(); for (i=0;i< numConstraints ; i++ ) { btTypedConstraint* constraint = m_constraints[i]; const btRigidBody* colObj0 = &constraint->getRigidBodyA(); const btRigidBody* colObj1 = &constraint->getRigidBodyB(); if (((colObj0) && ((colObj0)->mergesSimulationIslands())) && ((colObj1) && ((colObj1)->mergesSimulationIslands()))) { if (colObj0->IsActive() || colObj1->IsActive()) { m_islandManager->getUnionFind().unite((colObj0)->m_islandTag1, (colObj1)->m_islandTag1); } } } } m_islandManager->storeIslandActivationState(getCollisionWorld()); //contacts #ifdef USE_QUICKPROF btProfiler::beginBlock("solveConstraint"); #endif //USE_QUICKPROF //solve the regular constraints (point 2 point, hinge, etc) for (int g=0;gbuildJacobian(); constraint->solveConstraint( timeStep ); } } #ifdef USE_QUICKPROF btProfiler::endBlock("solveConstraint"); #endif //USE_QUICKPROF //solve the vehicles #ifdef NEW_BULLET_VEHICLE_SUPPORT //vehicles int numVehicles = m_wrapperVehicles.size(); for (int i=0;iGetVehicle(); vehicle->updateVehicle( timeStep); } #endif //NEW_BULLET_VEHICLE_SUPPORT struct InplaceSolverIslandCallback : public btSimulationIslandManager::IslandCallback { btContactSolverInfo& m_solverInfo; btConstraintSolver* m_solver; btIDebugDraw* m_debugDrawer; InplaceSolverIslandCallback( btContactSolverInfo& solverInfo, btConstraintSolver* solver, btIDebugDraw* debugDrawer) :m_solverInfo(solverInfo), m_solver(solver), m_debugDrawer(debugDrawer) { } virtual void ProcessIsland(btPersistentManifold** manifolds,int numManifolds) { m_solver->solveGroup( manifolds, numManifolds,m_solverInfo,m_debugDrawer); } }; m_solverInfo.m_friction = 0.9f; m_solverInfo.m_numIterations = m_numIterations; m_solverInfo.m_timeStep = timeStep; m_solverInfo.m_restitution = 0.f;//m_restitution; InplaceSolverIslandCallback solverCallback( m_solverInfo, m_solver, m_debugDrawer); #ifdef USE_QUICKPROF btProfiler::beginBlock("buildAndProcessIslands"); #endif //USE_QUICKPROF /// solve all the contact points and contact friction m_islandManager->buildAndProcessIslands(getCollisionWorld()->getDispatcher(),m_collisionWorld->getCollisionObjectArray(),&solverCallback); #ifdef USE_QUICKPROF btProfiler::endBlock("buildAndProcessIslands"); btProfiler::beginBlock("CallbackTriggers"); #endif //USE_QUICKPROF CallbackTriggers(); #ifdef USE_QUICKPROF btProfiler::endBlock("CallbackTriggers"); btProfiler::beginBlock("proceedToTransform"); #endif //USE_QUICKPROF { { UpdateAabbs(timeStep); float toi = 1.f; if (m_ccdMode == 3) { btDispatcherInfo dispatchInfo; dispatchInfo.m_timeStep = timeStep; dispatchInfo.m_stepCount = 0; dispatchInfo.m_dispatchFunc = btDispatcherInfo::DISPATCH_CONTINUOUS; //pairCache->refreshOverlappingPairs();//?? getCollisionWorld()->getDispatcher()->dispatchAllCollisionPairs(scene,dispatchInfo); toi = dispatchInfo.m_timeOfImpact; } // // integrating solution // { std::vector::iterator i; for (i=m_controllers.begin(); !(i==m_controllers.end()); i++) { CcdPhysicsController* ctrl = *i; btTransform predictedTrans; btRigidBody* body = ctrl->getRigidBody(); if (body->IsActive()) { if (!body->IsStatic()) { if (body->m_hitFraction < 1.f) { //set velocity to zero... until we have proper CCD integrated body->setLinearVelocity(body->getLinearVelocity()*0.5f); } body->predictIntegratedTransform(timeStep* toi, predictedTrans); body->proceedToTransform( predictedTrans); } } } } // // disable sleeping physics objects // std::vector m_sleepingControllers; std::vector::iterator i; for (i=m_controllers.begin(); !(i==m_controllers.end()); i++) { CcdPhysicsController* ctrl = (*i); btRigidBody* body = ctrl->getRigidBody(); ctrl->UpdateDeactivation(timeStep); if (ctrl->wantsSleeping()) { if (body->GetActivationState() == ACTIVE_TAG) body->SetActivationState( WANTS_DEACTIVATION ); } else { if (body->GetActivationState() != DISABLE_DEACTIVATION) body->SetActivationState( ACTIVE_TAG ); } if (useIslands) { if (body->GetActivationState() == ISLAND_SLEEPING) { m_sleepingControllers.push_back(ctrl); } } else { if (ctrl->wantsSleeping()) { m_sleepingControllers.push_back(ctrl); } } } } #ifdef USE_QUICKPROF btProfiler::endBlock("proceedToTransform"); btProfiler::beginBlock("SyncMotionStates"); #endif //USE_QUICKPROF SyncMotionStates(timeStep); #ifdef USE_QUICKPROF btProfiler::endBlock("SyncMotionStates"); btProfiler::endProfilingCycle(); #endif //USE_QUICKPROF #ifdef NEW_BULLET_VEHICLE_SUPPORT //sync wheels for vehicles int numVehicles = m_wrapperVehicles.size(); for (int i=0;iSyncWheels(); } #endif //NEW_BULLET_VEHICLE_SUPPORT } return true; } void CcdPhysicsEnvironment::setDebugMode(int debugMode) { if (m_debugDrawer){ m_debugDrawer->setDebugMode(debugMode); } } void CcdPhysicsEnvironment::setNumIterations(int numIter) { m_numIterations = numIter; } void CcdPhysicsEnvironment::setDeactivationTime(float dTime) { gDeactivationTime = dTime; } void CcdPhysicsEnvironment::setDeactivationLinearTreshold(float linTresh) { gLinearSleepingTreshold = linTresh; } void CcdPhysicsEnvironment::setDeactivationAngularTreshold(float angTresh) { gAngularSleepingTreshold = angTresh; } void CcdPhysicsEnvironment::setContactBreakingTreshold(float contactBreakingTreshold) { gContactBreakingTreshold = contactBreakingTreshold; } void CcdPhysicsEnvironment::setCcdMode(int ccdMode) { m_ccdMode = ccdMode; } void CcdPhysicsEnvironment::setSolverSorConstant(float sor) { m_solverInfo.m_sor = sor; } void CcdPhysicsEnvironment::setSolverTau(float tau) { m_solverInfo.m_tau = tau; } void CcdPhysicsEnvironment::setSolverDamping(float damping) { m_solverInfo.m_damping = damping; } void CcdPhysicsEnvironment::setLinearAirDamping(float damping) { gLinearAirDamping = damping; } void CcdPhysicsEnvironment::setUseEpa(bool epa) { gUseEpa = epa; } void CcdPhysicsEnvironment::setSolverType(int solverType) { switch (solverType) { case 1: { if (m_solverType != solverType) { m_solver = new btSequentialImpulseConstraintSolver(); break; } } case 0: default: if (m_solverType != solverType) { // m_solver = new OdeConstraintSolver(); break; } }; m_solverType = solverType ; } void CcdPhysicsEnvironment::SyncMotionStates(float timeStep) { std::vector::iterator i; // // synchronize the physics and graphics transformations // for (i=m_controllers.begin(); !(i==m_controllers.end()); i++) { CcdPhysicsController* ctrl = (*i); ctrl->SynchronizeMotionStates(timeStep); } } void CcdPhysicsEnvironment::setGravity(float x,float y,float z) { m_gravity = btVector3(x,y,z); std::vector::iterator i; //todo: review this gravity stuff for (i=m_controllers.begin(); !(i==m_controllers.end()); i++) { CcdPhysicsController* ctrl = (*i); ctrl->getRigidBody()->setGravity(m_gravity); } } #ifdef NEW_BULLET_VEHICLE_SUPPORT class DefaultVehicleRaycaster : public btVehicleRaycaster { CcdPhysicsEnvironment* m_physEnv; PHY_IPhysicsController* m_chassis; public: DefaultVehicleRaycaster(CcdPhysicsEnvironment* physEnv,PHY_IPhysicsController* chassis): m_physEnv(physEnv), m_chassis(chassis) { } virtual ~DefaultVehicleRaycaster() { } /* struct btVehicleRaycasterResult { btVehicleRaycasterResult() :m_distFraction(-1.f){}; btVector3 m_hitPointInWorld; btVector3 m_hitNormalInWorld; btScalar m_distFraction; }; */ virtual void* castRay(const btVector3& from,const btVector3& to, btVehicleRaycasterResult& result) { float hit[3]; float normal[3]; PHY_IPhysicsController* ignore = m_chassis; void* hitObject = m_physEnv->rayTest(ignore,from.x(),from.y(),from.z(),to.x(),to.y(),to.z(),hit[0],hit[1],hit[2],normal[0],normal[1],normal[2]); if (hitObject) { result.m_hitPointInWorld[0] = hit[0]; result.m_hitPointInWorld[1] = hit[1]; result.m_hitPointInWorld[2] = hit[2]; result.m_hitNormalInWorld[0] = normal[0]; result.m_hitNormalInWorld[1] = normal[1]; result.m_hitNormalInWorld[2] = normal[2]; result.m_hitNormalInWorld.normalize(); //calc fraction? or put it in the interface? //calc for now result.m_distFraction = (result.m_hitPointInWorld-from).length() / (to-from).length(); //some safety for 'explosion' due to sudden penetration of the full 'ray' /* if (result.m_distFraction<0.1) { printf("Vehicle rayCast: avoided instability due to penetration. Consider moving the connection points deeper inside vehicle chassis"); result.m_distFraction = 1.f; hitObject = 0; } */ /* if (result.m_distFraction>1.) { printf("Vehicle rayCast: avoided instability 1Consider moving the connection points deeper inside vehicle chassis"); result.m_distFraction = 1.f; hitObject = 0; } */ } //? return hitObject; } }; #endif //NEW_BULLET_VEHICLE_SUPPORT static int gConstraintUid = 1; int CcdPhysicsEnvironment::createConstraint(class PHY_IPhysicsController* ctrl0,class PHY_IPhysicsController* ctrl1,PHY_ConstraintType type, float pivotX,float pivotY,float pivotZ, float axisX,float axisY,float axisZ) { CcdPhysicsController* c0 = (CcdPhysicsController*)ctrl0; CcdPhysicsController* c1 = (CcdPhysicsController*)ctrl1; btRigidBody* rb0 = c0 ? c0->getRigidBody() : 0; btRigidBody* rb1 = c1 ? c1->getRigidBody() : 0; ASSERT(rb0); btVector3 pivotInA(pivotX,pivotY,pivotZ); btVector3 pivotInB = rb1 ? rb1->getCenterOfMassTransform().inverse()(rb0->getCenterOfMassTransform()(pivotInA)) : pivotInA; btVector3 axisInA(axisX,axisY,axisZ); btVector3 axisInB = rb1 ? (rb1->getCenterOfMassTransform().getBasis().inverse()*(rb0->getCenterOfMassTransform().getBasis() * axisInA)) : rb0->getCenterOfMassTransform().getBasis() * axisInA; bool angularOnly = false; switch (type) { case PHY_POINT2POINT_CONSTRAINT: { btPoint2PointConstraint* p2p = 0; if (rb1) { p2p = new btPoint2PointConstraint(*rb0, *rb1,pivotInA,pivotInB); } else { p2p = new btPoint2PointConstraint(*rb0, pivotInA); } m_constraints.push_back(p2p); p2p->setUserConstraintId(gConstraintUid++); p2p->setUserConstraintType(type); //64 bit systems can't cast pointer to int. could use size_t instead. return p2p->getUserConstraintId(); break; } case PHY_GENERIC_6DOF_CONSTRAINT: { btGeneric6DofConstraint* genericConstraint = 0; if (rb1) { btTransform frameInA; btTransform frameInB; btVector3 axis1, axis2; btPlaneSpace1( axisInA, axis1, axis2 ); frameInA.getBasis().setValue( axisInA.x(), axis1.x(), axis2.x(), axisInA.y(), axis1.y(), axis2.y(), axisInA.z(), axis1.z(), axis2.z() ); btPlaneSpace1( axisInB, axis1, axis2 ); frameInB.getBasis().setValue( axisInB.x(), axis1.x(), axis2.x(), axisInB.y(), axis1.y(), axis2.y(), axisInB.z(), axis1.z(), axis2.z() ); frameInA.setOrigin( pivotInA ); frameInB.setOrigin( pivotInB ); genericConstraint = new btGeneric6DofConstraint( *rb0,*rb1, frameInA,frameInB); } else { // TODO: Implement single body case... } m_constraints.push_back(genericConstraint); genericConstraint->setUserConstraintId(gConstraintUid++); genericConstraint->setUserConstraintType(type); //64 bit systems can't cast pointer to int. could use size_t instead. return genericConstraint->getUserConstraintId(); break; } case PHY_ANGULAR_CONSTRAINT: angularOnly = true; case PHY_LINEHINGE_CONSTRAINT: { btHingeConstraint* hinge = 0; if (rb1) { hinge = new btHingeConstraint( *rb0, *rb1,pivotInA,pivotInB,axisInA,axisInB); } else { hinge = new btHingeConstraint(*rb0, pivotInA,axisInA); } hinge->setAngularOnly(angularOnly); m_constraints.push_back(hinge); hinge->setUserConstraintId(gConstraintUid++); hinge->setUserConstraintType(type); //64 bit systems can't cast pointer to int. could use size_t instead. return hinge->getUserConstraintId(); break; } #ifdef NEW_BULLET_VEHICLE_SUPPORT case PHY_VEHICLE_CONSTRAINT: { btRaycastVehicle::btVehicleTuning* tuning = new btRaycastVehicle::btVehicleTuning(); btRigidBody* chassis = rb0; DefaultVehicleRaycaster* raycaster = new DefaultVehicleRaycaster(this,ctrl0); btRaycastVehicle* vehicle = new btRaycastVehicle(*tuning,chassis,raycaster); WrapperVehicle* wrapperVehicle = new WrapperVehicle(vehicle,ctrl0); m_wrapperVehicles.push_back(wrapperVehicle); vehicle->setUserConstraintId(gConstraintUid++); vehicle->setUserConstraintType(type); return vehicle->getUserConstraintId(); break; }; #endif //NEW_BULLET_VEHICLE_SUPPORT default: { } }; //RigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB return 0; } //Following the COLLADA physics specification for constraints int CcdPhysicsEnvironment::createUniversalD6Constraint( class PHY_IPhysicsController* ctrlRef,class PHY_IPhysicsController* ctrlOther, btTransform& frameInA, btTransform& frameInB, const btVector3& linearMinLimits, const btVector3& linearMaxLimits, const btVector3& angularMinLimits, const btVector3& angularMaxLimits ) { //we could either add some logic to recognize ball-socket and hinge, or let that up to the user //perhaps some warning or hint that hinge/ball-socket is more efficient? btGeneric6DofConstraint* genericConstraint = 0; CcdPhysicsController* ctrl0 = (CcdPhysicsController*) ctrlRef; CcdPhysicsController* ctrl1 = (CcdPhysicsController*) ctrlOther; btRigidBody* rb0 = ctrl0->getRigidBody(); btRigidBody* rb1 = ctrl1->getRigidBody(); if (rb1) { genericConstraint = new btGeneric6DofConstraint( *rb0,*rb1, frameInA,frameInB); genericConstraint->setLinearLowerLimit(linearMinLimits); genericConstraint->setLinearUpperLimit(linearMaxLimits); genericConstraint->setAngularLowerLimit(angularMinLimits); genericConstraint->setAngularUpperLimit(angularMaxLimits); } else { // TODO: Implement single body case... //No, we can use a fixed rigidbody in above code, rather then unnecessary duplation of code } if (genericConstraint) { m_constraints.push_back(genericConstraint); genericConstraint->setUserConstraintId(gConstraintUid++); genericConstraint->setUserConstraintType(PHY_GENERIC_6DOF_CONSTRAINT); //64 bit systems can't cast pointer to int. could use size_t instead. return genericConstraint->getUserConstraintId(); } return 0; } void CcdPhysicsEnvironment::removeConstraint(int constraintId) { std::vector::iterator i; for (i=m_constraints.begin(); !(i==m_constraints.end()); i++) { btTypedConstraint* constraint = (*i); if (constraint->getUserConstraintId() == constraintId) { std::swap(*i, m_constraints.back()); m_constraints.pop_back(); break; } } } struct FilterClosestRayResultCallback : public btCollisionWorld::ClosestRayResultCallback { PHY_IPhysicsController* m_ignoreClient; FilterClosestRayResultCallback (PHY_IPhysicsController* ignoreClient,const btVector3& rayFrom,const btVector3& rayTo) : btCollisionWorld::ClosestRayResultCallback(rayFrom,rayTo), m_ignoreClient(ignoreClient) { } virtual ~FilterClosestRayResultCallback() { } virtual float AddSingleResult(const btCollisionWorld::LocalRayResult& rayResult) { CcdPhysicsController* curHit = static_cast(rayResult.m_collisionObject->m_internalOwner); //ignore client... if (curHit != m_ignoreClient) { //if valid return ClosestRayResultCallback::AddSingleResult(rayResult); } return m_closestHitFraction; } }; PHY_IPhysicsController* CcdPhysicsEnvironment::rayTest(PHY_IPhysicsController* ignoreClient, float fromX,float fromY,float fromZ, float toX,float toY,float toZ, float& hitX,float& hitY,float& hitZ,float& normalX,float& normalY,float& normalZ) { btVector3 rayFrom(fromX,fromY,fromZ); btVector3 rayTo(toX,toY,toZ); btVector3 hitPointWorld,normalWorld; //Either Ray Cast with or without filtering //CollisionWorld::ClosestRayResultCallback rayCallback(rayFrom,rayTo); FilterClosestRayResultCallback rayCallback(ignoreClient,rayFrom,rayTo); PHY_IPhysicsController* nearestHit = 0; m_collisionWorld->rayTest(rayFrom,rayTo,rayCallback); if (rayCallback.HasHit()) { nearestHit = static_cast(rayCallback.m_collisionObject->m_internalOwner); hitX = rayCallback.m_hitPointWorld.getX(); hitY = rayCallback.m_hitPointWorld.getY(); hitZ = rayCallback.m_hitPointWorld.getZ(); normalX = rayCallback.m_hitNormalWorld.getX(); normalY = rayCallback.m_hitNormalWorld.getY(); normalZ = rayCallback.m_hitNormalWorld.getZ(); } return nearestHit; } int CcdPhysicsEnvironment::getNumContactPoints() { return 0; } void CcdPhysicsEnvironment::getContactPoint(int i,float& hitX,float& hitY,float& hitZ,float& normalX,float& normalY,float& normalZ) { } btBroadphaseInterface* CcdPhysicsEnvironment::getBroadphase() { return m_collisionWorld->getBroadphase(); } CcdPhysicsEnvironment::~CcdPhysicsEnvironment() { #ifdef NEW_BULLET_VEHICLE_SUPPORT m_wrapperVehicles.clear(); #endif //NEW_BULLET_VEHICLE_SUPPORT //m_broadphase->DestroyScene(); //delete broadphase ? release reference on broadphase ? //first delete scene, then dispatcher, because pairs have to release manifolds on the dispatcher //delete m_dispatcher; delete m_collisionWorld; delete m_islandManager; } int CcdPhysicsEnvironment::GetNumControllers() { return m_controllers.size(); } CcdPhysicsController* CcdPhysicsEnvironment::GetPhysicsController( int index) { return m_controllers[index]; } btTypedConstraint* CcdPhysicsEnvironment::getConstraintById(int constraintId) { int numConstraint = m_constraints.size(); int i; for (i=0;igetUserConstraintId()==constraintId) { return constraint; } } return 0; } void CcdPhysicsEnvironment::addSensor(PHY_IPhysicsController* ctrl) { CcdPhysicsController* ctrl1 = (CcdPhysicsController* )ctrl; std::vector::iterator i = std::find(m_controllers.begin(), m_controllers.end(), ctrl); if ((i == m_controllers.end())) { addCcdPhysicsController(ctrl1); } requestCollisionCallback(ctrl); //printf("addSensor\n"); } void CcdPhysicsEnvironment::removeCollisionCallback(PHY_IPhysicsController* ctrl) { std::vector::iterator i = std::find(m_triggerControllers.begin(), m_triggerControllers.end(), ctrl); if (!(i == m_triggerControllers.end())) { std::swap(*i, m_triggerControllers.back()); m_triggerControllers.pop_back(); } } void CcdPhysicsEnvironment::removeSensor(PHY_IPhysicsController* ctrl) { removeCollisionCallback(ctrl); //printf("removeSensor\n"); } void CcdPhysicsEnvironment::addTouchCallback(int response_class, PHY_ResponseCallback callback, void *user) { /* printf("addTouchCallback\n(response class = %i)\n",response_class); //map PHY_ convention into SM_ convention switch (response_class) { case PHY_FH_RESPONSE: printf("PHY_FH_RESPONSE\n"); break; case PHY_SENSOR_RESPONSE: printf("PHY_SENSOR_RESPONSE\n"); break; case PHY_CAMERA_RESPONSE: printf("PHY_CAMERA_RESPONSE\n"); break; case PHY_OBJECT_RESPONSE: printf("PHY_OBJECT_RESPONSE\n"); break; case PHY_STATIC_RESPONSE: printf("PHY_STATIC_RESPONSE\n"); break; default: assert(0); return; } */ m_triggerCallbacks[response_class] = callback; m_triggerCallbacksUserPtrs[response_class] = user; } void CcdPhysicsEnvironment::requestCollisionCallback(PHY_IPhysicsController* ctrl) { CcdPhysicsController* ccdCtrl = static_cast(ctrl); //printf("requestCollisionCallback\n"); m_triggerControllers.push_back(ccdCtrl); } void CcdPhysicsEnvironment::CallbackTriggers() { if (m_triggerCallbacks[PHY_OBJECT_RESPONSE] || (m_debugDrawer && (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawContactPoints))) { //walk over all overlapping pairs, and if one of the involved bodies is registered for trigger callback, perform callback int numManifolds = m_collisionWorld->getDispatcher()->getNumManifolds(); for (int i=0;igetDispatcher()->getManifoldByIndexInternal(i); int numContacts = manifold->getNumContacts(); if (numContacts) { if (m_debugDrawer && (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawContactPoints)) { for (int j=0;jgetContactPoint(j); if (m_debugDrawer) m_debugDrawer->drawContactPoint(cp.m_positionWorldOnB,cp.m_normalWorldOnB,cp.getDistance(),cp.getLifeTime(),color); } } btRigidBody* obj0 = static_cast(manifold->getBody0()); btRigidBody* obj1 = static_cast(manifold->getBody1()); //m_internalOwner is set in 'addPhysicsController' CcdPhysicsController* ctrl0 = static_cast(obj0->m_internalOwner); CcdPhysicsController* ctrl1 = static_cast(obj1->m_internalOwner); std::vector::iterator i = std::find(m_triggerControllers.begin(), m_triggerControllers.end(), ctrl0); if (i == m_triggerControllers.end()) { i = std::find(m_triggerControllers.begin(), m_triggerControllers.end(), ctrl1); } if (!(i == m_triggerControllers.end())) { m_triggerCallbacks[PHY_OBJECT_RESPONSE](m_triggerCallbacksUserPtrs[PHY_OBJECT_RESPONSE], ctrl0,ctrl1,0); } } } } } #ifdef NEW_BULLET_VEHICLE_SUPPORT //complex constraint for vehicles PHY_IVehicle* CcdPhysicsEnvironment::getVehicleConstraint(int constraintId) { int i; int numVehicles = m_wrapperVehicles.size(); for (i=0;iGetVehicle()->getUserConstraintId() == constraintId) return wrapperVehicle; } return 0; } #endif //NEW_BULLET_VEHICLE_SUPPORT int currentController = 0; int numController = 0; void CcdPhysicsEnvironment::UpdateAabbs(float timeStep) { std::vector::iterator i; btBroadphaseInterface* scene = getBroadphase(); numController = m_controllers.size(); currentController = 0; // // update aabbs, only for moving objects (!) // for (i=m_controllers.begin(); !(i==m_controllers.end()); i++) { currentController++; CcdPhysicsController* ctrl = (*i); btRigidBody* body = ctrl->getRigidBody(); btPoint3 minAabb,maxAabb; btCollisionShape* shapeinterface = ctrl->getCollisionShape(); shapeinterface->calculateTemporalAabb(body->getCenterOfMassTransform(), body->getLinearVelocity(), //body->getAngularVelocity(), btVector3(0.f,0.f,0.f),//no angular effect for now //body->getAngularVelocity(), timeStep,minAabb,maxAabb); btVector3 manifoldExtraExtents(gContactBreakingTreshold,gContactBreakingTreshold,gContactBreakingTreshold); minAabb -= manifoldExtraExtents; maxAabb += manifoldExtraExtents; btBroadphaseProxy* bp = body->m_broadphaseHandle; if (bp) { btVector3 color (1,1,0); if (m_debugDrawer) { //draw aabb switch (body->GetActivationState()) { case ISLAND_SLEEPING: { color.setValue(1,1,1); break; } case WANTS_DEACTIVATION: { color.setValue(0,0,1); break; } case ACTIVE_TAG: { break; } case DISABLE_DEACTIVATION: { color.setValue(1,0,1); }; }; if (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawAabb) { DrawAabb(m_debugDrawer,minAabb,maxAabb,color); } } if ( (maxAabb-minAabb).length2() < 1e12f) { scene->setAabb(bp,minAabb,maxAabb); } else { //something went wrong, investigate //removeCcdPhysicsController(ctrl); body->SetActivationState(DISABLE_SIMULATION); static bool reportMe = true; if (reportMe) { reportMe = false; printf("Overflow in AABB, object removed from simulation \n"); printf("If you can reproduce this, please email bugs@continuousphysics.com\n"); printf("Please include above information, your Platform, version of OS.\n"); printf("Thanks.\n"); } } } } } PHY_IPhysicsController* CcdPhysicsEnvironment::CreateSphereController(float radius,const PHY__Vector3& position) { btCcdConstructionInfo cinfo; cinfo.m_collisionShape = new btSphereShape(radius); cinfo.m_MotionState = 0; cinfo.m_physicsEnv = this; cinfo.m_collisionFlags |= btCollisionObject::noContactResponse; DefaultMotionState* motionState = new DefaultMotionState(); cinfo.m_MotionState = motionState; motionState->m_worldTransform.setIdentity(); motionState->m_worldTransform.setOrigin(btVector3(position[0],position[1],position[2])); CcdPhysicsController* sphereController = new CcdPhysicsController(cinfo); return sphereController; } PHY_IPhysicsController* CcdPhysicsEnvironment::CreateConeController(float coneradius,float coneheight) { btCcdConstructionInfo cinfo; cinfo.m_collisionShape = new btConeShape(coneradius,coneheight); cinfo.m_MotionState = 0; cinfo.m_physicsEnv = this; DefaultMotionState* motionState = new DefaultMotionState(); cinfo.m_MotionState = motionState; motionState->m_worldTransform.setIdentity(); // motionState->m_worldTransform.setOrigin(btVector3(position[0],position[1],position[2])); CcdPhysicsController* sphereController = new CcdPhysicsController(cinfo); return sphereController; } float CcdPhysicsEnvironment::getAppliedImpulse(int constraintid) { std::vector::iterator i; for (i=m_constraints.begin(); !(i==m_constraints.end()); i++) { btTypedConstraint* constraint = (*i); if (constraint->getUserConstraintId() == constraintid) { return constraint->getAppliedImpulse(); } } return 0.f; }