/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btCollisionDispatcher.h" #include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h" #include "BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.h" #include "BulletCollision/CollisionDispatch/btEmptyCollisionAlgorithm.h" #include "BulletCollision/CollisionDispatch/btConvexConcaveCollisionAlgorithm.h" #include "BulletCollision/CollisionDispatch/btCompoundCollisionAlgorithm.h" #include "BulletCollision/CollisionShapes/btCollisionShape.h" #include "BulletCollision/CollisionDispatch/btCollisionObject.h" #include #include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h" int gNumManifold = 0; btCollisionDispatcher::btCollisionDispatcher (): m_useIslands(true), m_defaultManifoldResult(0,0,0), m_count(0) { int i; //default CreationFunctions, filling the m_doubleDispatch table m_convexConvexCreateFunc = new btConvexConvexAlgorithm::CreateFunc; m_convexConcaveCreateFunc = new btConvexConcaveCollisionAlgorithm::CreateFunc; m_swappedConvexConcaveCreateFunc = new btConvexConcaveCollisionAlgorithm::SwappedCreateFunc; m_compoundCreateFunc = new btCompoundCollisionAlgorithm::CreateFunc; m_swappedCompoundCreateFunc = new btCompoundCollisionAlgorithm::SwappedCreateFunc; m_emptyCreateFunc = new btEmptyAlgorithm::CreateFunc; for (i=0;iclearManifold(); } void btCollisionDispatcher::releaseManifold(btPersistentManifold* manifold) { gNumManifold--; //printf("releaseManifold: gNumManifold %d\n",gNumManifold); clearManifold(manifold); std::vector::iterator i = std::find(m_manifoldsPtr.begin(), m_manifoldsPtr.end(), manifold); if (!(i == m_manifoldsPtr.end())) { std::swap(*i, m_manifoldsPtr.back()); m_manifoldsPtr.pop_back(); delete manifold; } } btCollisionAlgorithm* btCollisionDispatcher::findAlgorithm(btBroadphaseProxy& proxy0,btBroadphaseProxy& proxy1) { #define USE_DISPATCH_REGISTRY_ARRAY 1 #ifdef USE_DISPATCH_REGISTRY_ARRAY btCollisionObject* body0 = (btCollisionObject*)proxy0.m_clientObject; btCollisionObject* body1 = (btCollisionObject*)proxy1.m_clientObject; btCollisionAlgorithmConstructionInfo ci; ci.m_dispatcher = this; btCollisionAlgorithm* algo = m_doubleDispatch[body0->m_collisionShape->getShapeType()][body1->m_collisionShape->getShapeType()] ->CreateCollisionAlgorithm(ci,&proxy0,&proxy1); #else btCollisionAlgorithm* algo = internalFindAlgorithm(proxy0,proxy1); #endif //USE_DISPATCH_REGISTRY_ARRAY return algo; } btCollisionAlgorithmCreateFunc* btCollisionDispatcher::internalFindCreateFunc(int proxyType0,int proxyType1) { if (btBroadphaseProxy::isConvex(proxyType0) && btBroadphaseProxy::isConvex(proxyType1)) { return m_convexConvexCreateFunc; } if (btBroadphaseProxy::isConvex(proxyType0) && btBroadphaseProxy::isConcave(proxyType1)) { return m_convexConcaveCreateFunc; } if (btBroadphaseProxy::isConvex(proxyType1) && btBroadphaseProxy::isConcave(proxyType0)) { return m_swappedConvexConcaveCreateFunc; } if (btBroadphaseProxy::isCompound(proxyType0)) { return m_compoundCreateFunc; } else { if (btBroadphaseProxy::isCompound(proxyType1)) { return m_swappedCompoundCreateFunc; } } //failed to find an algorithm return m_emptyCreateFunc; } btCollisionAlgorithm* btCollisionDispatcher::internalFindAlgorithm(btBroadphaseProxy& proxy0,btBroadphaseProxy& proxy1) { m_count++; btCollisionObject* body0 = (btCollisionObject*)proxy0.m_clientObject; btCollisionObject* body1 = (btCollisionObject*)proxy1.m_clientObject; btCollisionAlgorithmConstructionInfo ci; ci.m_dispatcher = this; if (body0->m_collisionShape->isConvex() && body1->m_collisionShape->isConvex() ) { return new btConvexConvexAlgorithm(0,ci,&proxy0,&proxy1); } if (body0->m_collisionShape->isConvex() && body1->m_collisionShape->isConcave()) { return new btConvexConcaveCollisionAlgorithm(ci,&proxy0,&proxy1); } if (body1->m_collisionShape->isConvex() && body0->m_collisionShape->isConcave()) { return new btConvexConcaveCollisionAlgorithm(ci,&proxy1,&proxy0); } if (body0->m_collisionShape->isCompound()) { return new btCompoundCollisionAlgorithm(ci,&proxy0,&proxy1); } else { if (body1->m_collisionShape->isCompound()) { return new btCompoundCollisionAlgorithm(ci,&proxy1,&proxy0); } } //failed to find an algorithm return new btEmptyAlgorithm(ci); } bool btCollisionDispatcher::needsResponse(const btCollisionObject& colObj0,const btCollisionObject& colObj1) { //here you can do filtering bool hasResponse = (!(colObj0.m_collisionFlags & btCollisionObject::noContactResponse)) && (!(colObj1.m_collisionFlags & btCollisionObject::noContactResponse)); hasResponse = hasResponse && (colObj0.IsActive() || colObj1.IsActive()); return hasResponse; } bool btCollisionDispatcher::needsCollision(btBroadphaseProxy& proxy0,btBroadphaseProxy& proxy1) { btCollisionObject* body0 = (btCollisionObject*)proxy0.m_clientObject; btCollisionObject* body1 = (btCollisionObject*)proxy1.m_clientObject; assert(body0); assert(body1); bool needsCollision = true; if ((body0->m_collisionFlags & btCollisionObject::isStatic) && (body1->m_collisionFlags & btCollisionObject::isStatic)) needsCollision = false; if ((!body0->IsActive()) && (!body1->IsActive())) needsCollision = false; return needsCollision ; } ///allows the user to get contact point callbacks btManifoldResult* btCollisionDispatcher::getNewManifoldResult(btCollisionObject* obj0,btCollisionObject* obj1,btPersistentManifold* manifold) { //in-place, this prevents parallel dispatching, but just adding a list would fix that. btManifoldResult* manifoldResult = new (&m_defaultManifoldResult) btManifoldResult(obj0,obj1,manifold); return manifoldResult; } ///allows the user to get contact point callbacks void btCollisionDispatcher::releaseManifoldResult(btManifoldResult*) { } class btCollisionPairCallback : public btOverlapCallback { btDispatcherInfo& m_dispatchInfo; btCollisionDispatcher* m_dispatcher; int m_dispatcherId; public: btCollisionPairCallback(btDispatcherInfo& dispatchInfo,btCollisionDispatcher* dispatcher,int dispatcherId) :m_dispatchInfo(dispatchInfo), m_dispatcher(dispatcher), m_dispatcherId(dispatcherId) { } virtual bool processOverlap(btBroadphasePair& pair) { if (m_dispatcherId>= 0) { //dispatcher will keep algorithms persistent in the collision pair if (!pair.m_algorithms[m_dispatcherId]) { pair.m_algorithms[m_dispatcherId] = m_dispatcher->findAlgorithm( *pair.m_pProxy0, *pair.m_pProxy1); } if (pair.m_algorithms[m_dispatcherId]) { if (m_dispatchInfo.m_dispatchFunc == btDispatcherInfo::DISPATCH_DISCRETE) { pair.m_algorithms[m_dispatcherId]->processCollision(pair.m_pProxy0,pair.m_pProxy1,m_dispatchInfo); } else { float toi = pair.m_algorithms[m_dispatcherId]->calculateTimeOfImpact(pair.m_pProxy0,pair.m_pProxy1,m_dispatchInfo); if (m_dispatchInfo.m_timeOfImpact > toi) m_dispatchInfo.m_timeOfImpact = toi; } } } else { //non-persistent algorithm dispatcher btCollisionAlgorithm* algo = m_dispatcher->findAlgorithm( *pair.m_pProxy0, *pair.m_pProxy1); if (algo) { if (m_dispatchInfo.m_dispatchFunc == btDispatcherInfo::DISPATCH_DISCRETE) { algo->processCollision(pair.m_pProxy0,pair.m_pProxy1,m_dispatchInfo); } else { float toi = algo->calculateTimeOfImpact(pair.m_pProxy0,pair.m_pProxy1,m_dispatchInfo); if (m_dispatchInfo.m_timeOfImpact > toi) m_dispatchInfo.m_timeOfImpact = toi; } } } return false; } }; void btCollisionDispatcher::dispatchAllCollisionPairs(btOverlappingPairCache* pairCache,btDispatcherInfo& dispatchInfo) { //m_blockedForChanges = true; int dispatcherId = getUniqueId(); btCollisionPairCallback collisionCallback(dispatchInfo,this,dispatcherId); pairCache->processAllOverlappingPairs(&collisionCallback); //m_blockedForChanges = false; }