Bullet 2.81 Quickstart Guide

Erwin Coumans

October 6, 2012

at?
u
_

PHYSICS LIBRARY

Contents

1 IntroductiontoBullet.
1.1 MainFeatures,
1.2 Contactand Support
1.3 What'snew

1.3.1 NewinBullet2.81
1.4 Building the Bullet SDKand demos
1.4.1 Using premake with Visual Studio
1.4.2 Using premake with Xcode for Mac OSX or iOS . . .
1.4.3 Usingcmake
1.4.4 Usingautotools

2 HelloWorldo,
2.1 C++ consoleprogram v v v v v vt

3 Frequently asked questions
3.1 Buildproblems
3.2 Performanceissues0t
3.3 Physicsissues. e
3.4 Collisionissues i e
3.5 Raytesting v v v v v i i e e e e e e e e

Sourcecodel listings,

1 Introduction to Bullet

Bullet Physics is a professional open source collision detection, rigid body
and soft body dynamics library. The library is free for commercial use
under the zlib license.

1.1 Main Features

e Open source C++ code under zlib license and free for any commer-
cial use on all platforms including PLAYSTATION 3, XBox 360, Wii,
PC, Linux, Mac OSX, Android and iPhone

e Discrete and continuous collision detection including ray and convex
sweep test. Collision shapes include concave and convex meshes and
all basic primitives

e Fast and stable rigid body dynamics constraint solver, vehicle dy-
namics, character controller and slider, hinge, generic 6DOF and
cone twist constraint for ragdolls

e Soft Body dynamics for cloth, rope and deformable volumes with
two-way interaction with rigid bodies, including constraint support

e Maya Dynamica plugin, Blender integration, COLLADA physics im-
port/export support

1.2 Contact and Support

e Public forum for support and feedback is available at http://
bulletphysics.org

http://opensource.org/licenses/zlib-license.php
http://bulletphysics.org
http://bulletphysics.org

1.3 What’s new

PLAYSTATION 3 licensed developers can download an optimized
version for Cell SPU through Sony PS3 Devnet.

1.3 What’s new
1.3.1 New in Bullet 2.81

SIMD and Neon optimizations for iOS and Mac OSX, thanks to a
contribution from Apple

Rolling Friction using a constraint, thanks to Erin Catto for the idea.
See Demos/RollingFrictionDemo/RollingFrictionDemo.cpp

XML serialization. See Bullet/Demos/BulletXmlImportDemo and
Bullet/Demos/SerializeDemo

Gear constraint. See Bullet/Demos/ConstraintDemo.

Improved continuous collision response, feeding speculative con-
tacts to the constraint solver. See Bullet/Demos/CcdPhysicsDemo

Improved premake4 build system including support for Mac OSX,
Linux and iOS

Refactoring of collision detection pipeline using stack allocation in-
stead of modifying the collision object. This will allow better future
multithreading optimizations.

1.4 Building the Bullet SDK and demos

Windows developers can download the zipped sources of Bullet from
http://bullet.googlecode.com. Mac OS X, Linux and other devel-
opers should download the gzipped tar archive.

https://ps3.scedev.net/projects/spubullet
http://bullet.googlecode.com

1 Introduction to Bullet

1.4.1 Using premake with Visual Studio

After unzipping the source code, you can open the Bullet/build di-
rectory and double click on vs2010.bat to generate Visual Studio
2010 project files and solution. Just open Bullet/build/vs2010/
OBulletSolution.sln

1.4.2 Using premake with Xcode for Mac OSX or i0OS
1.4.3 Using cmake
1.4.4 Using autotools

16
17
18
19
20
21
22

27
28

29
30
31

32
33
34
35
36
37

38
39
40

41
42

2 Hello World

2.1 C++ console program

Let’s discuss the creation of a basic Bullet simulation from the beginning to
the end. For simplicity we print the state of the simulation to console using
printf, instead of using 3D graphics to display the objects. The source code
of this tutorial is located in Demos/HelloWorld/HelloWorld. cpp.

It is a good idea to try to compile, link and run this HelloWorld.cpp
program first.

As you can see in 2.1 you can include a convenience header file
btBulletDynamicsCommon. h.

Source Code 2.1: HelloWorld.cpp include header

#include "btBulletDynamicsCommon.h"
#include <stdio.h>

/// This is a Hello World program for running a basic Bullet physics simulation

int main(int argc, char** argv)

{

Now we create the dynamics world:

Source Code 2.2: HelloWorld.cpp initialize world

///collision configuration contains default setup for memory, collision setup. Advanced users can
create their own configuration.
btDefaultCollisionConfiguration* collisionConfiguration = new btDefaultCollisionConfiguration();

///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher
(see Extras/BulletMultiThreaded)
btCollisionDispatcher* dispatcher = new btCollisionDispatcher(collisionConfiguration);

///btDbvtBroadphase is a good general purpose broadphase. You can also try out btAxis3Sweep.
btBroadphaseInterface* overlappingPairCache = new btDbvtBroadphase();

///the default constraint solver. For parallel processing you can use a different solver (see
Extras/BulletMultiThreaded)

btSequentiallmpulseConstraintSolver* solver = new btSequentiallmpulseConstraintSolver;

btDiscreteDynamicsWorld* dynamicsWorld = new btDiscreteDynamicsWorld(dispatcher,
overlappingPairCache ,solver ,collisionConfiguration);

dynamicsWorld->setGravity (btVector3(0,-10,0));

115
116
117
118
119
120
121
122
123
124
125
126
127
128

129
130
131

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

2 Hello World

Once the world is created you can step the simulation as follows:

Source Code 2.3: HelloWorld.cpp step simulation

for (i=0;i<100;i++)
{
dynamicsWorld->stepSimulation(1.£/60.£f,10);

//print positions of all objects
for (int j=dynamicsWorld->getNumCollisionObjects()-1; j>=0 ;j--)
{
btCollisionObject* obj = dynamicsWorld->getCollisionObjectArray () [jl;
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState ())
{
btTransform trans;
body->getMotionState () ->getWorldTransform(trans);

printf ("world, pos,=,%f,%f,%f\n" ,float (trans.getOrigin().getX()),float(trans.getOrigin().getY

()),float(trans.getOrigin().getZ()));

At the end of the program you delete all objects in the reverse order of

creation. Here is the cleanup listing of our HelloWorld.cpp program.

Source Code 2.4: HelloWorld.cpp cleanup

//remove the rigidbodies from the dynamics world and delete them
for (i=dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)

{
btCollisionObject* obj = dynamicsWorld->getCollisionObjectArray () [i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState ())
{
delete body->getMotionState();
}
dynamicsWorld->removeCollisionObject(obj);
delete obj;
}

//delete collision shapes
for (int j=0;j<collisionShapes.size();j++)

{
btCollisionShape* shape = collisionShapes[j];
collisionShapes[j] = 0;
delete shape;

}

//delete dynamics world
delete dynamicsWorld;

//delete solver
delete solver;

//delete broadphase
delete overlappingPairCache;

//delete dispatcher
delete dispatcher;

delete collisionConfiguration;

//next line is optional: it will be cleared by the destructor when the array goes out of scope
collisionShapes.clear () ;

3 Frequently asked questions

Here is a placeholder for a FAQ. For more information it is best to visit the
Bullet Physics forums at http://bulletphysics.org.

3.1 Build problems

todo

3.2 Performance issues

todo

3.3 Physics issues

todo

3.4 Collision issues

todo

3.5 Ray testing

todo

http://bulletphysics.org

Source Code Listings

2.1 HelloWorld.cpp include header
2.2 HelloWorld.cpp initialize world
2.3 HelloWorld.cpp step simulation
2.4 HelloWorld.cpp cleanup

Index

zIlib license, 2

	Introduction to Bullet
	Main Features
	Contact and Support
	What's new
	New in Bullet 2.81

	Building the Bullet SDK and demos
	Using premake with Visual Studio
	Using premake with Xcode for Mac OSX or iOS
	Using cmake
	Using autotools

	Hello World
	C++ console program

	Frequently asked questions
	Build problems
	Performance issues
	Physics issues
	Collision issues
	Ray testing

	Source code listings
	Index

