
Bullet 2.81 Quickstart Guide

Erwin Coumans

October 6, 2012

BULLET
P HYS ICS L I BRARY

Contents

1 Introduction to Bullet . 2
1.1 Main Features . 2
1.2 Contact and Support . 2
1.3 What’s new . 3

1.3.1 New in Bullet 2.81 3
1.4 Building the Bullet SDK and demos 3

1.4.1 Using premake with Visual Studio 4
1.4.2 Using premake with Xcode for Mac OSX or iOS . . . 4
1.4.3 Using cmake . 4
1.4.4 Using autotools . 4

2 Hello World . 5
2.1 C++ console program . 5

3 Frequently asked questions 7
3.1 Build problems . 7
3.2 Performance issues . 7
3.3 Physics issues . 7
3.4 Collision issues . 7
3.5 Ray testing . 7

Source code listings . 8

Index . 9

1

1 Introduction to Bullet

Bullet Physics is a professional open source collision detection, rigid body
and soft body dynamics library. The library is free for commercial use
under the zlib license.

1.1 Main Features

• Open source C++ code under zlib license and free for any commer-
cial use on all platforms including PLAYSTATION 3, XBox 360, Wii,
PC, Linux, Mac OSX, Android and iPhone

• Discrete and continuous collision detection including ray and convex
sweep test. Collision shapes include concave and convex meshes and
all basic primitives

• Fast and stable rigid body dynamics constraint solver, vehicle dy-
namics, character controller and slider, hinge, generic 6DOF and
cone twist constraint for ragdolls

• Soft Body dynamics for cloth, rope and deformable volumes with
two-way interaction with rigid bodies, including constraint support

• Maya Dynamica plugin, Blender integration, COLLADA physics im-
port/export support

1.2 Contact and Support

• Public forum for support and feedback is available at http://
bulletphysics.org

2

http://opensource.org/licenses/zlib-license.php
http://bulletphysics.org
http://bulletphysics.org

1.3 What’s new

• PLAYSTATION 3 licensed developers can download an optimized
version for Cell SPU through Sony PS3 Devnet.

1.3 What’s new

1.3.1 New in Bullet 2.81

• SIMD and Neon optimizations for iOS and Mac OSX, thanks to a
contribution from Apple

• Rolling Friction using a constraint, thanks to Erin Catto for the idea.
See Demos/RollingFrictionDemo/RollingFrictionDemo.cpp

• XML serialization. See Bullet/Demos/BulletXmlImportDemo and
Bullet/Demos/SerializeDemo

• Gear constraint. See Bullet/Demos/ConstraintDemo.

• Improved continuous collision response, feeding speculative con-
tacts to the constraint solver. See Bullet/Demos/CcdPhysicsDemo

• Improved premake4 build system including support for Mac OSX,
Linux and iOS

• Refactoring of collision detection pipeline using stack allocation in-
stead of modifying the collision object. This will allow better future
multithreading optimizations.

1.4 Building the Bullet SDK and demos

Windows developers can download the zipped sources of Bullet from
http://bullet.googlecode.com. Mac OS X, Linux and other devel-
opers should download the gzipped tar archive.

3

https://ps3.scedev.net/projects/spubullet
http://bullet.googlecode.com

1 Introduction to Bullet

1.4.1 Using premake with Visual Studio

After unzipping the source code, you can open the Bullet/build di-
rectory and double click on vs2010.bat to generate Visual Studio
2010 project files and solution. Just open Bullet/build/vs2010/
0BulletSolution.sln

1.4.2 Using premake with Xcode for Mac OSX or iOS

1.4.3 Using cmake

1.4.4 Using autotools

4

2 Hello World

2.1 C++ console program

Let’s discuss the creation of a basic Bullet simulation from the beginning to
the end. For simplicity we print the state of the simulation to console using
printf, instead of using 3D graphics to display the objects. The source code
of this tutorial is located in Demos/HelloWorld/HelloWorld.cpp.

It is a good idea to try to compile, link and run this HelloWorld.cpp
program first.

As you can see in 2.1 you can include a convenience header file
btBulletDynamicsCommon.h.

Source Code 2.1: HelloWorld.cpp include header
16 #include "btBulletDynamicsCommon.h"

17 #include <stdio.h>

18
19 /// This is a Hello World program for running a basic Bullet physics simulation

20
21 int main(int argc , char** argv)

22 {

Now we create the dynamics world:

Source Code 2.2: HelloWorld.cpp initialize world
27
28 ///collision configuration contains default setup for memory , collision setup. Advanced users can

create their own configuration.

29 btDefaultCollisionConfiguration* collisionConfiguration = new btDefaultCollisionConfiguration ();

30
31 ///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher

(see Extras/BulletMultiThreaded)

32 btCollisionDispatcher* dispatcher = new btCollisionDispatcher(collisionConfiguration);

33
34 ///btDbvtBroadphase is a good general purpose broadphase. You can also try out btAxis3Sweep.

35 btBroadphaseInterface* overlappingPairCache = new btDbvtBroadphase ();

36
37 ///the default constraint solver. For parallel processing you can use a different solver (see

Extras/BulletMultiThreaded)

38 btSequentialImpulseConstraintSolver* solver = new btSequentialImpulseConstraintSolver;

39
40 btDiscreteDynamicsWorld* dynamicsWorld = new btDiscreteDynamicsWorld(dispatcher ,

overlappingPairCache ,solver ,collisionConfiguration);

41
42 dynamicsWorld ->setGravity(btVector3 (0,-10,0));

5

2 Hello World

Once the world is created you can step the simulation as follows:

Source Code 2.3: HelloWorld.cpp step simulation
115 for (i=0;i<100;i++)

116 {

117 dynamicsWorld ->stepSimulation (1.f/60.f,10);

118
119 //print positions of all objects

120 for (int j=dynamicsWorld ->getNumCollisionObjects () -1; j>=0 ;j--)

121 {

122 btCollisionObject* obj = dynamicsWorld ->getCollisionObjectArray ()[j];

123 btRigidBody* body = btRigidBody :: upcast(obj);

124 if (body && body ->getMotionState ())

125 {

126 btTransform trans;

127 body ->getMotionState ()->getWorldTransform(trans);

128 printf("world pos = %f,%f,%f\n",float(trans.getOrigin ().getX()),float(trans.getOrigin ().getY

()),float(trans.getOrigin ().getZ()));

129 }

130 }

131 }

At the end of the program you delete all objects in the reverse order of
creation. Here is the cleanup listing of our HelloWorld.cpp program.

Source Code 2.4: HelloWorld.cpp cleanup
138
139 // remove the rigidbodies from the dynamics world and delete them

140 for (i=dynamicsWorld ->getNumCollisionObjects () -1; i>=0 ;i--)

141 {

142 btCollisionObject* obj = dynamicsWorld ->getCollisionObjectArray ()[i];

143 btRigidBody* body = btRigidBody :: upcast(obj);

144 if (body && body ->getMotionState ())

145 {

146 delete body ->getMotionState ();

147 }

148 dynamicsWorld ->removeCollisionObject(obj);

149 delete obj;

150 }

151
152 // delete collision shapes

153 for (int j=0;j<collisionShapes.size();j++)

154 {

155 btCollisionShape* shape = collisionShapes[j];

156 collisionShapes[j] = 0;

157 delete shape;

158 }

159
160 // delete dynamics world

161 delete dynamicsWorld;

162
163 // delete solver

164 delete solver;

165
166 // delete broadphase

167 delete overlappingPairCache;

168
169 // delete dispatcher

170 delete dispatcher;

171
172 delete collisionConfiguration;

173
174 //next line is optional: it will be cleared by the destructor when the array goes out of scope

175 collisionShapes.clear ();

6

3 Frequently asked questions

Here is a placeholder for a FAQ. For more information it is best to visit the
Bullet Physics forums at http://bulletphysics.org.

3.1 Build problems

todo

3.2 Performance issues

todo

3.3 Physics issues

todo

3.4 Collision issues

todo

3.5 Ray testing

todo

7

http://bulletphysics.org

Source Code Listings

2.1 HelloWorld.cpp include header 5
2.2 HelloWorld.cpp initialize world 5
2.3 HelloWorld.cpp step simulation 6
2.4 HelloWorld.cpp cleanup 6

8

Index

zlib license, 2

9

	Introduction to Bullet
	Main Features
	Contact and Support
	What's new
	New in Bullet 2.81

	Building the Bullet SDK and demos
	Using premake with Visual Studio
	Using premake with Xcode for Mac OSX or iOS
	Using cmake
	Using autotools

	Hello World
	C++ console program

	Frequently asked questions
	Build problems
	Performance issues
	Physics issues
	Collision issues
	Ray testing

	Source code listings
	Index

