#include "ConcaveScene.h" #include "GpuRigidBodyDemo.h" #include "Bullet3Common/b3Quickprof.h" #include "OpenGLWindow/ShapeData.h" #include "OpenGLWindow/GLInstancingRenderer.h" #include "Bullet3Common/b3Quaternion.h" #include "OpenGLWindow/b3gWindowInterface.h" #include "Bullet3OpenCL/BroadphaseCollision/b3GpuSapBroadphase.h" #include "../GpuDemoInternalData.h" #include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h" #include "OpenGLWindow/OpenGLInclude.h" #include "OpenGLWindow/GLInstanceRendererInternalData.h" #include "Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h" #include "Bullet3OpenCL/RigidBody/b3GpuRigidBodyPipeline.h" #include "Bullet3OpenCL/RigidBody/b3GpuNarrowPhase.h" #include "Bullet3OpenCL/RigidBody/b3Config.h" #include "GpuRigidBodyDemoInternalData.h" #include"../../Wavefront/objLoader.h" #include "Bullet3Common/b3Transform.h" #include "OpenGLWindow/GLInstanceGraphicsShape.h" #define CONCAVE_GAPX 16 #define CONCAVE_GAPY 8 #define CONCAVE_GAPZ 16 GLInstanceGraphicsShape* createGraphicsShapeFromWavefrontObj(objLoader* obj) { b3AlignedObjectArray* vertices = new b3AlignedObjectArray; { // int numVertices = obj->vertexCount; // int numIndices = 0; b3AlignedObjectArray* indicesPtr = new b3AlignedObjectArray; /* for (int v=0;vvertexCount;v++) { vtx.xyzw[0] = obj->vertexList[v]->e[0]; vtx.xyzw[1] = obj->vertexList[v]->e[1]; vtx.xyzw[2] = obj->vertexList[v]->e[2]; b3Vector3 n(vtx.xyzw[0],vtx.xyzw[1],vtx.xyzw[2]); if (n.length2()>B3_EPSILON) { n.normalize(); vtx.normal[0] = n[0]; vtx.normal[1] = n[1]; vtx.normal[2] = n[2]; } else { vtx.normal[0] = 0; //todo vtx.normal[1] = 1; vtx.normal[2] = 0; } vtx.uv[0] = 0.5f;vtx.uv[1] = 0.5f; //todo vertices->push_back(vtx); } */ for (int f=0;ffaceCount;f++) { obj_face* face = obj->faceList[f]; //b3Vector3 normal(face.m_plane[0],face.m_plane[1],face.m_plane[2]); if (face->vertex_count>=3) { b3Vector3 normal(0,1,0); int vtxBaseIndex = vertices->size(); if (face->vertex_count<=4) { indicesPtr->push_back(vtxBaseIndex); indicesPtr->push_back(vtxBaseIndex+1); indicesPtr->push_back(vtxBaseIndex+2); GLInstanceVertex vtx0; vtx0.xyzw[0] = obj->vertexList[face->vertex_index[0]]->e[0]; vtx0.xyzw[1] = obj->vertexList[face->vertex_index[0]]->e[1]; vtx0.xyzw[2] = obj->vertexList[face->vertex_index[0]]->e[2]; vtx0.xyzw[3] = 0.f;//obj->vertexList[face->vertex_index[0]]->e[2]; vtx0.uv[0] = 0.5f;//obj->textureList[face->vertex_index[0]]->e[0]; vtx0.uv[1] = 0.5f;//obj->textureList[face->vertex_index[0]]->e[1]; GLInstanceVertex vtx1; vtx1.xyzw[0] = obj->vertexList[face->vertex_index[1]]->e[0]; vtx1.xyzw[1] = obj->vertexList[face->vertex_index[1]]->e[1]; vtx1.xyzw[2] = obj->vertexList[face->vertex_index[1]]->e[2]; vtx1.xyzw[3]= 0.f; vtx1.uv[0] = 0.5f;//obj->textureList[face->vertex_index[1]]->e[0]; vtx1.uv[1] = 0.5f;//obj->textureList[face->vertex_index[1]]->e[1]; GLInstanceVertex vtx2; vtx2.xyzw[0] = obj->vertexList[face->vertex_index[2]]->e[0]; vtx2.xyzw[1] = obj->vertexList[face->vertex_index[2]]->e[1]; vtx2.xyzw[2] = obj->vertexList[face->vertex_index[2]]->e[2]; vtx2.xyzw[3] = 0.f; vtx2.uv[0] = 0.5f;obj->textureList[face->vertex_index[2]]->e[0]; vtx2.uv[1] = 0.5f;obj->textureList[face->vertex_index[2]]->e[1]; b3Vector3 v0(vtx0.xyzw[0],vtx0.xyzw[1],vtx0.xyzw[2]); b3Vector3 v1(vtx1.xyzw[0],vtx1.xyzw[1],vtx1.xyzw[2]); b3Vector3 v2(vtx2.xyzw[0],vtx2.xyzw[1],vtx2.xyzw[2]); normal = (v1-v0).cross(v2-v0); normal.normalize(); vtx0.normal[0] = normal[0]; vtx0.normal[1] = normal[1]; vtx0.normal[2] = normal[2]; vtx1.normal[0] = normal[0]; vtx1.normal[1] = normal[1]; vtx1.normal[2] = normal[2]; vtx2.normal[0] = normal[0]; vtx2.normal[1] = normal[1]; vtx2.normal[2] = normal[2]; vertices->push_back(vtx0); vertices->push_back(vtx1); vertices->push_back(vtx2); } if (face->vertex_count==4) { indicesPtr->push_back(vtxBaseIndex); indicesPtr->push_back(vtxBaseIndex+1); indicesPtr->push_back(vtxBaseIndex+2); indicesPtr->push_back(vtxBaseIndex+3); // GLInstanceVertex vtx3; vtx3.xyzw[0] = obj->vertexList[face->vertex_index[3]]->e[0]; vtx3.xyzw[1] = obj->vertexList[face->vertex_index[3]]->e[1]; vtx3.xyzw[2] = obj->vertexList[face->vertex_index[3]]->e[2]; vtx3.uv[0] = 0.5; vtx3.uv[1] = 0.5; vtx3.normal[0] = normal[0]; vtx3.normal[1] = normal[1]; vtx3.normal[2] = normal[2]; vertices->push_back(vtx3); } } } GLInstanceGraphicsShape* gfxShape = new GLInstanceGraphicsShape; gfxShape->m_vertices = vertices; gfxShape->m_numvertices = vertices->size(); gfxShape->m_indices = indicesPtr; gfxShape->m_numIndices = indicesPtr->size(); for (int i=0;i<4;i++) gfxShape->m_scaling[i] = 1;//bake the scaling into the vertices return gfxShape; } } void ConcaveScene::createConcaveMesh(const ConstructionInfo& ci, const char* fileName, const b3Vector3& shift, const b3Vector3& scaling) { objLoader* objData = new objLoader(); FILE* f = 0; char relativeFileName[1024]; { const char* prefix[]={"./","../","../../","../../../","../../../../"}; int numPrefixes = sizeof(prefix)/sizeof(char*); for (int i=0;iload(relativeFileName); int index=10; { GLInstanceGraphicsShape* shape = createGraphicsShapeFromWavefrontObj(objData); b3AlignedObjectArray verts; for (int i=0;im_numvertices;i++) { for (int j=0;j<3;j++) shape->m_vertices->at(i).xyzw[j] += shift[j]; b3Vector3 vtx(shape->m_vertices->at(i).xyzw[0], shape->m_vertices->at(i).xyzw[1], shape->m_vertices->at(i).xyzw[2]); verts.push_back(vtx*scaling); } int colIndex = m_data->m_np->registerConcaveMesh(&verts,shape->m_indices,b3Vector3(1,1,1)); { int strideInBytes = 9*sizeof(float); int numVertices = sizeof(cube_vertices)/strideInBytes; int numIndices = sizeof(cube_indices)/sizeof(int); //int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); //int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); int shapeId = ci.m_instancingRenderer->registerShape(&shape->m_vertices->at(0).xyzw[0], shape->m_numvertices, &shape->m_indices->at(0), shape->m_numIndices); b3Quaternion orn(0,0,0,1); b3Vector4 color(0.3,0.3,1,1.f);//0.5);//1.f { float mass = 0.f; b3Vector3 position(0,0,0); int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId,position,orn,color,scaling); int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false); index++; } } } delete objData; } void ConcaveScene::setupScene(const ConstructionInfo& ci) { if (1) { //char* fileName = "data/slopedPlane100.obj"; //char* fileName = "data/plane100.obj"; char* fileName = "data/plane100.obj"; //char* fileName = "data/teddy.obj";//"plane.obj"; // char* fileName = "data/sponza_closed.obj";//"plane.obj"; //char* fileName = "data/leoTest1.obj"; // char* fileName = "data/samurai_monastry.obj"; // char* fileName = "data/teddy2_VHACD_CHs.obj"; b3Vector3 shift1(0,-50,0);//0,230,80);//150,-100,-120); b3Vector4 scaling(4,4,4,1); // createConcaveMesh(ci,"data/plane100.obj",shift1,scaling); //createConcaveMesh(ci,"data/plane100.obj",shift,scaling); b3Vector3 shift2(0,0,0);//0,230,80);//150,-100,-120); createConcaveMesh(ci,"data/teddy.obj",shift2,scaling); b3Vector3 shift3(130,-150,-75);//0,230,80);//150,-100,-120); createConcaveMesh(ci,"data/leoTest1.obj",shift3,scaling); } else { int strideInBytes = 9*sizeof(float); int numVertices = sizeof(cube_vertices)/strideInBytes; int numIndices = sizeof(cube_indices)/sizeof(int); int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); int group=1; int mask=1; int index=0; { b3Vector4 scaling(400,0.001,400,1); int colIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling); b3Vector3 position(0,-2,0); b3Quaternion orn(0,0,0,1); b3Vector4 color(0,0,1,1); int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId,position,orn,color,scaling); int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(0.f,position,orn,colIndex,index,false); } } createDynamicObjects(ci); m_data->m_rigidBodyPipeline->writeAllInstancesToGpu(); float camPos[4]={0,0,0,0};//65.5,4.5,65.5,0}; //float camPos[4]={1,12.5,1.5,0}; m_instancingRenderer->setCameraPitch(45); m_instancingRenderer->setCameraTargetPosition(camPos); m_instancingRenderer->setCameraDistance(25); } void ConcaveScene::createDynamicObjects(const ConstructionInfo& ci) { int strideInBytes = 9*sizeof(float); int numVertices = sizeof(cube_vertices)/strideInBytes; int numIndices = sizeof(cube_indices)/sizeof(int); //int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); int group=1; int mask=1; int index=0; if (1) { int curColor = 0; b3Vector4 colors[4] = { b3Vector4(1,1,1,1), b3Vector4(1,1,0.3,1), b3Vector4(0.3,1,1,1), b3Vector4(0.3,0.3,1,1), }; b3Vector4 scaling(1,1,1,1); int colIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling); for (int i=0;iregisterGraphicsInstance(shapeId,position,orn,color,scaling); int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false); index++; } } } } } void ConcaveCompoundScene::setupScene(const ConstructionInfo& ci) { ConcaveScene::setupScene(ci); float camPos[4]={0,50,0,0};//65.5,4.5,65.5,0}; //float camPos[4]={1,12.5,1.5,0}; m_instancingRenderer->setCameraPitch(45); m_instancingRenderer->setCameraTargetPosition(camPos); m_instancingRenderer->setCameraDistance(40); } void ConcaveCompound2Scene::createDynamicObjects(const ConstructionInfo& ci) { objLoader* objData = new objLoader(); char* fileName = "data/teddy2_VHACD_CHs.obj"; //char* fileName = "data/cube_offset.obj"; b3Vector3 shift(0,0,0);//0,230,80);//150,-100,-120); b3Vector4 scaling(1,1,1,1); FILE* f = 0; char relativeFileName[1024]; { const char* prefix[]={"./","../","../../","../../../","../../../../"}; int numPrefixes = sizeof(prefix)/sizeof(char*); for (int i=0;iload(relativeFileName); if (objData->objectCount>0) { int strideInBytes = 9*sizeof(float); b3AlignedObjectArray vertexArray; b3AlignedObjectArray indexArray; //int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); int group=1; int mask=1; int index=0; int colIndex = 0; b3AlignedObjectArray vertices; int stride2 = sizeof(GLInstanceVertex); b3Assert(stride2 == strideInBytes); { b3AlignedObjectArray childShapes; int numChildShapes = objData->objectCount; for (int i=0;iobjectList[i]; int numVertices = i==numChildShapes-1? objData->vertexCount-object->vertex_offset : objData->objectList[i+1]->vertex_offset - object->vertex_offset; int numFaces = i==numChildShapes-1? objData->faceCount - object->face_offset : objData->objectList[i+1]->face_offset-object->face_offset; //for now, only support polyhedral child shapes b3GpuChildShape child; b3Vector3 pos(0,0,0); b3Quaternion orn(0,0,0,1); for (int v=0;v<4;v++) { child.m_childPosition[v] = pos[v]; child.m_childOrientation[v] = orn[v]; } b3Transform tr; tr.setIdentity(); tr.setOrigin(pos); tr.setRotation(orn); int baseIndex = vertexArray.size(); for (int f=0;ffaceList[object->face_offset+f]; if (face->vertex_count==3) { for (int i=0;i<3;i++) { indexArray.push_back(face->vertex_index[i]);//-object->vertex_offset); } } else { b3Assert(0); } } b3Vector3 center(0,0,0); b3AlignedObjectArray tmpVertices; //add transformed graphics vertices and indices b3Vector3 myScaling(1,1,1);//50,50,50);//300,300,300); for (int v=0;vvertexList[object->vertex_offset+v]; vert.uv[0] = 0.5f; vert.uv[1] = 0.5f; vert.normal[0]=0.f; vert.normal[1]=1.f; vert.normal[2]=0.f; b3Vector3 vertPos; vertPos[0] = orgVert->e[0]*myScaling[0]; vertPos[1] = orgVert->e[1]*myScaling[1]; vertPos[2] = orgVert->e[2]*myScaling[2]; vertPos[3] =0.f; center+=vertPos; } center/=numVertices; for (int v=0;vvertexList[object->vertex_offset+v]; vert.uv[0] = 0.5f; vert.uv[1] = 0.5f; vert.normal[0]=0.f; vert.normal[1]=1.f; vert.normal[2]=0.f; b3Vector3 vertPos; vertPos[0] = orgVert->e[0]*myScaling[0]; vertPos[1] = orgVert->e[1]*myScaling[1]; vertPos[2] = orgVert->e[2]*myScaling[2]; vertPos[3] =0.f; // vertPos-=center; vert.xyzw[0] = vertPos[0]; vert.xyzw[1] = vertPos[1]; vert.xyzw[2] = vertPos[2]; tmpVertices.push_back(vert); b3Vector3 newPos = tr*vertPos; vert.xyzw[0] = newPos[0]; vert.xyzw[1] = newPos[1]; vert.xyzw[2] = newPos[2]; vert.xyzw[3] = 0.f; vertexArray.push_back(vert); } int childColIndex = m_data->m_np->registerConvexHullShape(&tmpVertices[0].xyzw[0],strideInBytes,numVertices, scaling); child.m_shapeIndex = childColIndex; childShapes.push_back(child); colIndex = childColIndex; } colIndex= m_data->m_np->registerCompoundShape(&childShapes); } //int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); int shapeId = ci.m_instancingRenderer->registerShape(&vertexArray[0].xyzw[0],vertexArray.size(),&indexArray[0],indexArray.size()); b3Vector4 colors[4] = { b3Vector4(1,0,0,1), b3Vector4(0,1,0,1), b3Vector4(0,0,1,1), b3Vector4(0,1,1,1), }; int curColor = 0; for (int i=0;iregisterGraphicsInstance(shapeId,position,orn,color,scaling); int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false); index++; } } } } delete objData; } void ConcaveCompoundScene::createDynamicObjects(const ConstructionInfo& ci) { int strideInBytes = 9*sizeof(float); int numVertices = sizeof(cube_vertices)/strideInBytes; int numIndices = sizeof(cube_indices)/sizeof(int); b3AlignedObjectArray vertexArray; b3AlignedObjectArray indexArray; //int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); int group=1; int mask=1; int index=0; float scaling[4] = {1,1,1,1}; int colIndex = 0; GLInstanceVertex* cubeVerts = (GLInstanceVertex*)&cube_vertices[0]; int stride2 = sizeof(GLInstanceVertex); b3Assert(stride2 == strideInBytes); { int childColIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling); b3Vector3 childPositions[3] = { b3Vector3(0,-2,0), b3Vector3(0,0,0), b3Vector3(0,0,2) }; b3AlignedObjectArray childShapes; int numChildShapes = 3; for (int i=0;im_np->registerCompoundShape(&childShapes); } //int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices); int shapeId = ci.m_instancingRenderer->registerShape(&vertexArray[0].xyzw[0],vertexArray.size(),&indexArray[0],indexArray.size()); b3Vector4 colors[4] = { b3Vector4(1,0,0,1), b3Vector4(0,1,0,1), b3Vector4(0,0,1,1), b3Vector4(0,1,1,1), }; int curColor = 0; for (int i=0;iregisterGraphicsInstance(shapeId,position,orn,color,scaling); int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false); index++; } } } } void ConcaveSphereScene::setupScene(const ConstructionInfo& ci) { ConcaveScene::setupScene(ci); float camPos[4]={0,50,0,0};//65.5,4.5,65.5,0}; //float camPos[4]={1,12.5,1.5,0}; m_instancingRenderer->setCameraPitch(45); m_instancingRenderer->setCameraTargetPosition(camPos); m_instancingRenderer->setCameraDistance(40); } void ConcaveSphereScene::createDynamicObjects(const ConstructionInfo& ci) { b3Vector4 colors[4] = { b3Vector4(1,0,0,1), b3Vector4(0,1,0,1), b3Vector4(0,1,1,1), b3Vector4(1,1,0,1), }; int index=0; int curColor = 0; float radius = 1; //int colIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling); int colIndex = m_data->m_np->registerSphereShape(radius);//>registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling); int prevGraphicsShapeIndex = registerGraphicsSphereShape(ci,radius,false); for (int i=0;iregisterGraphicsInstance(prevGraphicsShapeIndex,position,orn,color,scaling); int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false); index++; } } } }