#include "Grasp_Block.h" #include "../OpenGLWindow/SimpleOpenGL3App.h" #include "btBulletDynamicsCommon.h" #include "BulletDynamics/MLCPSolvers/btDantzigSolver.h" #include "BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h" #include "BulletDynamics/Featherstone/btMultiBody.h" #include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h" #include "BulletDynamics/Featherstone/btMultiBodyBlockConstraintSolver.h" #include "BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.h" #include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h" #include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h" #include "BulletDynamics/Featherstone/btMultiBodyLink.h" #include "BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.h" #include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h" #include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h" #include "BulletDynamics/Featherstone/btMultiBodyFixedConstraint.h" #include "BulletDynamics/Featherstone/btMultiBodySliderConstraint.h" #include "../OpenGLWindow/GLInstancingRenderer.h" #include "BulletCollision/CollisionShapes/btShapeHull.h" #include "../CommonInterfaces/CommonMultiBodyBase.h" class Grasp_Block : public CommonMultiBodyBase { public: Grasp_Block(GUIHelperInterface* helper); virtual ~Grasp_Block(); virtual void initPhysics(); virtual void stepSimulation(float deltaTime); virtual void resetCamera() { float dist = 1; float pitch = -35; float yaw = 50; float targetPos[3] = {-3, 2.8, -2.5}; m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]); } void createBoxStack(int numBoxes, btScalar centerX, btScalar centerY); btMultiBody* createFeatherstoneMultiBody(class btMultiBodyDynamicsWorld* world, int numLinks, const btVector3& basePosition, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents, bool spherical = false, bool fixedBase = false); void createGround(const btVector3& halfExtents = btVector3(50, 50, 50), btScalar zOffSet = btScalar(-1.55)); void addColliders(btMultiBody* pMultiBody, btMultiBodyDynamicsWorld* pWorld, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents); }; static bool g_fixedBase = true; static bool g_firstInit = true; static float scaling = 0.4f; static float friction = 1.; static int g_constraintSolverType = 0; Grasp_Block::Grasp_Block(GUIHelperInterface* helper) : CommonMultiBodyBase(helper) { m_guiHelper->setUpAxis(1); } Grasp_Block::~Grasp_Block() { // Do nothing } void Grasp_Block::stepSimulation(float deltaTime) { //use a smaller internal timestep, there are stability issues float internalTimeStep = 1. / 240.f; m_dynamicsWorld->stepSimulation(deltaTime, 10, internalTimeStep); } void Grasp_Block::initPhysics() { m_guiHelper->setUpAxis(1); if (g_firstInit) { m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraDistance(btScalar(10. * scaling)); m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraPitch(50); g_firstInit = false; } ///collision configuration contains default setup for memory, collision setup m_collisionConfiguration = new btDefaultCollisionConfiguration(); ///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded) m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration); m_broadphase = new btDbvtBroadphase(); if (g_constraintSolverType == 3) { g_constraintSolverType = 0; g_fixedBase = !g_fixedBase; } btMLCPSolverInterface* mlcp; switch (g_constraintSolverType++) { case 0: m_solver = new btMultiBodyConstraintSolver; b3Printf("Constraint Solver: Sequential Impulse"); break; case 1: mlcp = new btSolveProjectedGaussSeidel(); m_solver = new btMultiBodyMLCPConstraintSolver(mlcp); b3Printf("Constraint Solver: MLCP + PGS"); break; default: mlcp = new btDantzigSolver(); m_solver = new btMultiBodyMLCPConstraintSolver(mlcp); b3Printf("Constraint Solver: MLCP + Dantzig"); break; } m_solver = new btMultiBodyBlockConstraintSolver(); btMultiBodyDynamicsWorld* world = new btMultiBodyDynamicsWorld(m_dispatcher, m_broadphase, m_solver, m_collisionConfiguration); m_dynamicsWorld = world; m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->setGravity(btVector3(btScalar(0), btScalar(-9.81), btScalar(0))); m_dynamicsWorld->getSolverInfo().m_globalCfm = btScalar(1e-4); //todo: what value is good? /// Create a few basic rigid bodies btVector3 groundHalfExtents(50, 50, 50); btCollisionShape* groundShape = new btBoxShape(groundHalfExtents); m_collisionShapes.push_back(groundShape); btTransform groundTransform; groundTransform.setIdentity(); groundTransform.setOrigin(btVector3(0, -50, 00)); btVector3 linkHalfExtents(btScalar(0.05), btScalar(0.37), btScalar(0.1)); btVector3 baseHalfExtents(btScalar(0.05), btScalar(0.37), btScalar(0.1)); // createBoxStack(5, 0, 0); btScalar groundHeight = btScalar(-51.55); btScalar mass = btScalar(0.0); btVector3 localInertia(0, 0, 0); groundShape->calculateLocalInertia(mass, localInertia); // Using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects groundTransform.setIdentity(); groundTransform.setOrigin(btVector3(0, groundHeight, 0)); btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, groundShape, localInertia); btRigidBody* body = new btRigidBody(rbInfo); // Add the body to the dynamics world m_dynamicsWorld->addRigidBody(body, 1, 1 + 2); createGround(); m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld); } void Grasp_Block::createBoxStack(int numBoxes, btScalar centerX, btScalar centerZ) { //create a few dynamic rigidbodies // Re-using the same collision is better for memory usage and performance const btScalar boxHalfSize = btScalar(0.1); btBoxShape* colShape = createBoxShape(btVector3(boxHalfSize, boxHalfSize, boxHalfSize)); m_collisionShapes.push_back(colShape); /// Create Dynamic Objects btTransform startTransform; startTransform.setIdentity(); btScalar mass(1.0); btVector3 localInertia(0, 0, 0); colShape->calculateLocalInertia(mass,localInertia); for (int i = 0; i < numBoxes; ++i) { startTransform.setOrigin(btVector3(centerX, btScalar(btScalar(2) * boxHalfSize * i), centerZ)); createRigidBody(mass, startTransform, colShape); } } btMultiBody* Grasp_Block::createFeatherstoneMultiBody(btMultiBodyDynamicsWorld* pWorld, int numLinks, const btVector3& basePosition, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents, bool spherical, bool fixedBase) { //init the base btVector3 baseInertiaDiag(0.f, 0.f, 0.f); float baseMass = 1.f; if (baseMass) { btCollisionShape* pTempBox = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2])); pTempBox->calculateLocalInertia(baseMass, baseInertiaDiag); delete pTempBox; } bool canSleep = false; btMultiBody* pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, fixedBase, canSleep); btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f); pMultiBody->setBasePos(basePosition); pMultiBody->setWorldToBaseRot(baseOriQuat); btVector3 vel(0, 0, 0); //init the links btVector3 hingeJointAxis(1, 0, 0); float linkMass = 1.f; btVector3 linkInertiaDiag(0.f, 0.f, 0.f); btCollisionShape* pTempBox = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); pTempBox->calculateLocalInertia(linkMass, linkInertiaDiag); delete pTempBox; //y-axis assumed up btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset ////// btScalar q0 = 0.f * SIMD_PI / 180.f; btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0); quat0.normalize(); ///// for (int i = 0; i < numLinks; ++i) { if (!spherical) pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, true); else //pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false); pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, true); } pMultiBody->finalizeMultiDof(); /// pWorld->addMultiBody(pMultiBody); /// return pMultiBody; } void Grasp_Block::createGround(const btVector3& halfExtents, btScalar zOffSet) { btCollisionShape* groundShape = new btBoxShape(halfExtents); m_collisionShapes.push_back(groundShape); // rigidbody is dynamic if and only if mass is non zero, otherwise static btScalar mass(0.); const bool isDynamic = (mass != 0.f); btVector3 localInertia(0, 0, 0); if (isDynamic) groundShape->calculateLocalInertia(mass, localInertia); // using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects btTransform groundTransform; groundTransform.setIdentity(); groundTransform.setOrigin(btVector3(0, -halfExtents.z() + zOffSet, 0)); btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, groundShape, localInertia); btRigidBody* body = new btRigidBody(rbInfo); // add the body to the dynamics world m_dynamicsWorld->addRigidBody(body, 1, 1 + 2); } void Grasp_Block::addColliders(btMultiBody* pMultiBody, btMultiBodyDynamicsWorld* pWorld, const btVector3& baseHalfExtents, const btVector3& linkHalfExtents) { btAlignedObjectArray world_to_local; world_to_local.resize(pMultiBody->getNumLinks() + 1); btAlignedObjectArray local_origin; local_origin.resize(pMultiBody->getNumLinks() + 1); world_to_local[0] = pMultiBody->getWorldToBaseRot(); local_origin[0] = pMultiBody->getBasePos(); { btScalar quat[4] = {-world_to_local[0].x(), -world_to_local[0].y(), -world_to_local[0].z(), world_to_local[0].w()}; if (1) { btCollisionShape* box = new btBoxShape(baseHalfExtents); btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, -1); col->setCollisionShape(box); btTransform tr; tr.setIdentity(); tr.setOrigin(local_origin[0]); tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3])); col->setWorldTransform(tr); pWorld->addCollisionObject(col, 2, 1 + 2); col->setFriction(friction); pMultiBody->setBaseCollider(col); } } for (int i = 0; i < pMultiBody->getNumLinks(); ++i) { const int parent = pMultiBody->getParent(i); world_to_local[i + 1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent + 1]; local_origin[i + 1] = local_origin[parent + 1] + (quatRotate(world_to_local[i + 1].inverse(), pMultiBody->getRVector(i))); } for (int i = 0; i < pMultiBody->getNumLinks(); ++i) { btVector3 posr = local_origin[i + 1]; btScalar quat[4] = {-world_to_local[i + 1].x(), -world_to_local[i + 1].y(), -world_to_local[i + 1].z(), world_to_local[i + 1].w()}; btCollisionShape* box = new btBoxShape(linkHalfExtents); btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i); col->setCollisionShape(box); btTransform tr; tr.setIdentity(); tr.setOrigin(posr); tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3])); col->setWorldTransform(tr); col->setFriction(friction); pWorld->addCollisionObject(col, 2, 1 + 2); pMultiBody->getLink(i).m_collider = col; } } CommonExampleInterface* Grasp_BlockCreateFunc(CommonExampleOptions& options) { return new Grasp_Block(options.m_guiHelper); }