/* Copyright (c) 2012 Advanced Micro Devices, Inc. This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ //Originally written by Erwin Coumans #include "btConvexUtility.h" #include "BulletGeometry/btConvexHullComputer.h" #include "BulletGeometry/btGrahamScan2dConvexHull.h" #include "BulletCommon/btQuaternion.h" #include "BulletCommon/btHashMap.h" #include "btConvexPolyhedronCL.h" btConvexUtility::~btConvexUtility() { } bool btConvexUtility::initializePolyhedralFeatures(const btVector3* orgVertices, int numPoints, bool mergeCoplanarTriangles) { btConvexHullComputer conv; conv.compute(&orgVertices[0].getX(), sizeof(btVector3),numPoints,0.f,0.f); btAlignedObjectArray faceNormals; int numFaces = conv.faces.size(); faceNormals.resize(numFaces); btConvexHullComputer* convexUtil = &conv; btAlignedObjectArray tmpFaces; tmpFaces.resize(numFaces); int numVertices = convexUtil->vertices.size(); m_vertices.resize(numVertices); for (int p=0;pvertices[p]; } for (int i=0;ifaces[i]; //printf("face=%d\n",face); const btConvexHullComputer::Edge* firstEdge = &convexUtil->edges[face]; const btConvexHullComputer::Edge* edge = firstEdge; btVector3 edges[3]; int numEdges = 0; //compute face normals do { int src = edge->getSourceVertex(); tmpFaces[i].m_indices.push_back(src); int targ = edge->getTargetVertex(); btVector3 wa = convexUtil->vertices[src]; btVector3 wb = convexUtil->vertices[targ]; btVector3 newEdge = wb-wa; newEdge.normalize(); if (numEdges<2) edges[numEdges++] = newEdge; edge = edge->getNextEdgeOfFace(); } while (edge!=firstEdge); btScalar planeEq = 1e30f; if (numEdges==2) { faceNormals[i] = edges[0].cross(edges[1]); faceNormals[i].normalize(); tmpFaces[i].m_plane[0] = faceNormals[i].getX(); tmpFaces[i].m_plane[1] = faceNormals[i].getY(); tmpFaces[i].m_plane[2] = faceNormals[i].getZ(); tmpFaces[i].m_plane[3] = planeEq; } else { btAssert(0);//degenerate? faceNormals[i].setZero(); } for (int v=0;veq) { planeEq=eq; } } tmpFaces[i].m_plane[3] = -planeEq; } //merge coplanar faces and copy them to m_polyhedron btScalar faceWeldThreshold= 0.999f; btAlignedObjectArray todoFaces; for (int i=0;i coplanarFaceGroup; int refFace = todoFaces[todoFaces.size()-1]; coplanarFaceGroup.push_back(refFace); btMyFace& faceA = tmpFaces[refFace]; todoFaces.pop_back(); btVector3 faceNormalA(faceA.m_plane[0],faceA.m_plane[1],faceA.m_plane[2]); for (int j=todoFaces.size()-1;j>=0;j--) { int i = todoFaces[j]; btMyFace& faceB = tmpFaces[i]; btVector3 faceNormalB(faceB.m_plane[0],faceB.m_plane[1],faceB.m_plane[2]); if (faceNormalA.dot(faceNormalB)>faceWeldThreshold) { coplanarFaceGroup.push_back(i); todoFaces.remove(i); } } bool did_merge = false; if (coplanarFaceGroup.size()>1) { //do the merge: use Graham Scan 2d convex hull btAlignedObjectArray orgpoints; btVector3 averageFaceNormal(0,0,0); for (int i=0;im_faces.push_back(tmpFaces[coplanarFaceGroup[i]]); btMyFace& face = tmpFaces[coplanarFaceGroup[i]]; btVector3 faceNormal(face.m_plane[0],face.m_plane[1],face.m_plane[2]); averageFaceNormal+=faceNormal; for (int f=0;f hull; averageFaceNormal.normalize(); GrahamScanConvexHull2D(orgpoints,hull,averageFaceNormal); for (int i=0;i1e-6 || fabsf(v.y())>1e-6 || fabsf(v.z())>1e-6) return false; return true; } struct btInternalVertexPair { btInternalVertexPair(short int v0,short int v1) :m_v0(v0), m_v1(v1) { if (m_v1>m_v0) btSwap(m_v0,m_v1); } short int m_v0; short int m_v1; int getHash() const { return m_v0+(m_v1<<16); } bool equals(const btInternalVertexPair& other) const { return m_v0==other.m_v0 && m_v1==other.m_v1; } }; struct btInternalEdge { btInternalEdge() :m_face0(-1), m_face1(-1) { } short int m_face0; short int m_face1; }; // #ifdef TEST_INTERNAL_OBJECTS bool btConvexUtility::testContainment() const { for(int p=0;p<8;p++) { btVector3 LocalPt; if(p==0) LocalPt = m_localCenter + btVector3(m_extents[0], m_extents[1], m_extents[2]); else if(p==1) LocalPt = m_localCenter + btVector3(m_extents[0], m_extents[1], -m_extents[2]); else if(p==2) LocalPt = m_localCenter + btVector3(m_extents[0], -m_extents[1], m_extents[2]); else if(p==3) LocalPt = m_localCenter + btVector3(m_extents[0], -m_extents[1], -m_extents[2]); else if(p==4) LocalPt = m_localCenter + btVector3(-m_extents[0], m_extents[1], m_extents[2]); else if(p==5) LocalPt = m_localCenter + btVector3(-m_extents[0], m_extents[1], -m_extents[2]); else if(p==6) LocalPt = m_localCenter + btVector3(-m_extents[0], -m_extents[1], m_extents[2]); else if(p==7) LocalPt = m_localCenter + btVector3(-m_extents[0], -m_extents[1], -m_extents[2]); for(int i=0;i0.0f) return false; } } return true; } #endif void btConvexUtility::initialize() { btHashMap edges; btScalar TotalArea = 0.0f; m_localCenter.setValue(0, 0, 0); for(int i=0;im_face0>=0); btAssert(edptr->m_face1<0); edptr->m_face1 = i; } else { btInternalEdge ed; ed.m_face0 = i; edges.insert(vp,ed); } } } #ifdef USE_CONNECTED_FACES for(int i=0;im_face0>=0); btAssert(edptr->m_face1>=0); int connectedFace = (edptr->m_face0==i)?edptr->m_face1:edptr->m_face0; m_faces[i].m_connectedFaces[j] = connectedFace; } } #endif//USE_CONNECTED_FACES for(int i=0;iMaxX) MaxX = pt.x(); if(pt.y()MaxY) MaxY = pt.y(); if(pt.z()MaxZ) MaxZ = pt.z(); } mC.setValue(MaxX+MinX, MaxY+MinY, MaxZ+MinZ); mE.setValue(MaxX-MinX, MaxY-MinY, MaxZ-MinZ); // const btScalar r = m_radius / sqrtf(2.0f); const btScalar r = m_radius / sqrtf(3.0f); const int LargestExtent = mE.maxAxis(); const btScalar Step = (mE[LargestExtent]*0.5f - r)/1024.0f; m_extents[0] = m_extents[1] = m_extents[2] = r; m_extents[LargestExtent] = mE[LargestExtent]*0.5f; bool FoundBox = false; for(int j=0;j<1024;j++) { if(testContainment()) { FoundBox = true; break; } m_extents[LargestExtent] -= Step; } if(!FoundBox) { m_extents[0] = m_extents[1] = m_extents[2] = r; } else { // Refine the box const btScalar Step = (m_radius - r)/1024.0f; const int e0 = (1<