#include #include "Bullet3Common/b3Logging.h" #include "Bullet3Common/b3CommandLineArgs.h" #include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h" #include "Bullet3OpenCL/RigidBody/kernels/solverUtils.h" extern int gArgc; extern char** gArgv; namespace { struct CompileBullet3JacobiContactSolverKernels : public ::testing::Test { cl_context m_clContext; cl_device_id m_clDevice; cl_command_queue m_clQueue; char* m_clDeviceName; cl_platform_id m_platformId; CompileBullet3JacobiContactSolverKernels() : m_clDeviceName(0), m_clContext(0), m_clDevice(0), m_clQueue(0), m_platformId(0) { // You can do set-up work for each test here. b3CommandLineArgs args(gArgc, gArgv); int preferredDeviceIndex = -1; int preferredPlatformIndex = -1; bool allowCpuOpenCL = false; initCL(); } virtual ~CompileBullet3JacobiContactSolverKernels() { // You can do clean-up work that doesn't throw exceptions here. exitCL(); } // If the constructor and destructor are not enough for setting up // and cleaning up each test, you can define the following methods: #include "initCL.h" virtual void SetUp() { // Code here will be called immediately after the constructor (right // before each test). } virtual void TearDown() { // Code here will be called immediately after each test (right // before the destructor). } }; TEST_F(CompileBullet3JacobiContactSolverKernels, jacobiContactKernels) { cl_int errNum = 0; const char* additionalMacros = ""; cl_program solverUtilsProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, solverUtilsCL, &errNum, additionalMacros, 0, true); ASSERT_EQ(CL_SUCCESS, errNum); { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverUtilsCL, "CountBodiesKernel", &errNum, solverUtilsProg, additionalMacros); ASSERT_EQ(CL_SUCCESS, errNum); ASSERT_FALSE(k == 0); clReleaseKernel(k); } { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverUtilsCL, "ContactToConstraintSplitKernel", &errNum, solverUtilsProg, additionalMacros); ASSERT_EQ(CL_SUCCESS, errNum); ASSERT_FALSE(k == 0); clReleaseKernel(k); } { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverUtilsCL, "ClearVelocitiesKernel", &errNum, solverUtilsProg, additionalMacros); ASSERT_EQ(CL_SUCCESS, errNum); ASSERT_FALSE(k == 0); clReleaseKernel(k); } { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverUtilsCL, "AverageVelocitiesKernel", &errNum, solverUtilsProg, additionalMacros); ASSERT_EQ(CL_SUCCESS, errNum); ASSERT_FALSE(k == 0); clReleaseKernel(k); } { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverUtilsCL, "UpdateBodyVelocitiesKernel", &errNum, solverUtilsProg, additionalMacros); ASSERT_EQ(CL_SUCCESS, errNum); ASSERT_FALSE(k == 0); clReleaseKernel(k); } { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverUtilsCL, "SolveContactJacobiKernel", &errNum, solverUtilsProg, additionalMacros); ASSERT_EQ(CL_SUCCESS, errNum); ASSERT_FALSE(k == 0); clReleaseKernel(k); } { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, solverUtilsCL, "SolveFrictionJacobiKernel", &errNum, solverUtilsProg, additionalMacros); ASSERT_EQ(CL_SUCCESS, errNum); ASSERT_FALSE(k == 0); clReleaseKernel(k); } clReleaseProgram(solverUtilsProg); } }; // namespace