/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Elsevier CDROM license agreements grants nonexclusive license to use the software for any purpose, commercial or non-commercial as long as the following credit is included identifying the original source of the software: Parts of the source are "from the book Real-Time Collision Detection by Christer Ericson, published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc." */ // Needed to be able to DMA. #ifdef WIN32 #include "SpuFakeDma.h" #else #include "SPU_Common/SpuDefines.h" #include #include #endif //WIN32 #include "SpuVoronoiSimplexSolver.h" #include "LinearMath/btScalar.h" #include #include #define VERTA 0 #define VERTB 1 #define VERTC 2 #define VERTD 3 #define CATCH_DEGENERATE_TETRAHEDRON 1 void SpuVoronoiSimplexSolver::removeVertex(int index) { assert(m_numVertices>0); m_numVertices--; m_simplexVectorW[index] = m_simplexVectorW[m_numVertices]; m_simplexPointsP[index] = m_simplexPointsP[m_numVertices]; m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices]; // m_VertexIndexA[index] = m_VertexIndexA[m_numVertices]; // m_VertexIndexB[index] = m_VertexIndexB[m_numVertices]; } void SpuVoronoiSimplexSolver::reduceVertices (const SpuUsageBitfield& usedVerts) { if ((numVertices() >= 4) && (!usedVerts.usedVertexD)) removeVertex(3); if ((numVertices() >= 3) && (!usedVerts.usedVertexC)) removeVertex(2); if ((numVertices() >= 2) && (!usedVerts.usedVertexB)) removeVertex(1); if ((numVertices() >= 1) && (!usedVerts.usedVertexA)) removeVertex(0); } //clear the simplex, remove all the vertices void SpuVoronoiSimplexSolver::reset() { m_cachedValidClosest = false; m_numVertices = 0; m_needsUpdate = true; m_lastW = Vectormath::Aos::Vector3(float(1e30),float(1e30),float(1e30)); m_cachedBC.reset(); } //add a vertex void SpuVoronoiSimplexSolver::addVertex(const Vectormath::Aos::Vector3& w, const Vectormath::Aos::Point3& p, const Vectormath::Aos::Point3& q)//, int vertexIndexA, int vertexIndexB) { m_lastW = w; m_needsUpdate = true; m_simplexVectorW[m_numVertices] = w; m_simplexPointsP[m_numVertices] = Vectormath::Aos::Vector3(p); m_simplexPointsQ[m_numVertices] = Vectormath::Aos::Vector3(q); //m_VertexIndexA[m_numVertices] = vertexIndexA; //m_VertexIndexB[m_numVertices] = vertexIndexB; m_numVertices++; } bool SpuVoronoiSimplexSolver::updateClosestVectorAndPoints() { if (m_needsUpdate) { m_cachedBC.reset(); m_needsUpdate = false; switch (numVertices()) { case 0: m_cachedValidClosest = false; break; case 1: { m_cachedP1 = m_simplexPointsP[0]; m_cachedP2 = m_simplexPointsQ[0]; m_cachedV = m_cachedP1-m_cachedP2; //== m_simplexVectorW[0] m_cachedBC.reset(); m_cachedBC.setBarycentricCoordinates(float(1.),float(0.),float(0.),float(0.)); m_cachedValidClosest = m_cachedBC.isValid(); break; }; case 2: { //closest point origin from line segment const Vectormath::Aos::Vector3& from = m_simplexVectorW[0]; const Vectormath::Aos::Vector3& to = m_simplexVectorW[1]; Vectormath::Aos::Vector3 nearest; Vectormath::Aos::Vector3 p (float(0.),float(0.),float(0.)); Vectormath::Aos::Vector3 diff = p - from; Vectormath::Aos::Vector3 v = to - from; float t = dot(v, diff); if (t > 0) { float dotVV = dot(v, v); if (t < dotVV) { t /= dotVV; diff -= t*v; m_cachedBC.m_usedVertices.usedVertexA = true; m_cachedBC.m_usedVertices.usedVertexB = true; } else { t = 1; diff -= v; //reduce to 1 point m_cachedBC.m_usedVertices.usedVertexB = true; } } else { t = 0; //reduce to 1 point m_cachedBC.m_usedVertices.usedVertexA = true; } m_cachedBC.setBarycentricCoordinates(1-t,t); nearest = from + t*v; m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]); m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]); m_cachedV = m_cachedP1 - m_cachedP2; reduceVertices(m_cachedBC.m_usedVertices); m_cachedValidClosest = m_cachedBC.isValid(); break; } case 3: { //closest point origin from triangle Vectormath::Aos::Vector3 p (float(0.),float(0.),float(0.)); const Vectormath::Aos::Vector3& a = m_simplexVectorW[0]; const Vectormath::Aos::Vector3& b = m_simplexVectorW[1]; const Vectormath::Aos::Vector3& c = m_simplexVectorW[2]; closestPtPointTriangle(p,a,b,c,m_cachedBC); m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] + m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] + m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2]; m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] + m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] + m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2]; m_cachedV = m_cachedP1-m_cachedP2; reduceVertices (m_cachedBC.m_usedVertices); m_cachedValidClosest = m_cachedBC.isValid(); break; } case 4: { Vectormath::Aos::Vector3 p (float(0.),float(0.),float(0.)); const Vectormath::Aos::Vector3& a = m_simplexVectorW[0]; const Vectormath::Aos::Vector3& b = m_simplexVectorW[1]; const Vectormath::Aos::Vector3& c = m_simplexVectorW[2]; const Vectormath::Aos::Vector3& d = m_simplexVectorW[3]; bool hasSeperation = closestPtPointTetrahedron(p,a,b,c,d,m_cachedBC); if (hasSeperation) { m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] + m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] + m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] + m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3]; m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] + m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] + m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] + m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3]; m_cachedV = m_cachedP1-m_cachedP2; reduceVertices (m_cachedBC.m_usedVertices); } else { // printf("sub distance got penetration\n"); if (m_cachedBC.m_degenerate) { m_cachedValidClosest = false; } else { m_cachedValidClosest = true; //degenerate case == false, penetration = true + zero m_cachedV = Vectormath::Aos::Vector3(float(0.),float(0.),float(0.)); } break; } m_cachedValidClosest = m_cachedBC.isValid(); //closest point origin from tetrahedron break; } default: { m_cachedValidClosest = false; } }; } return m_cachedValidClosest; } //return/calculate the closest vertex bool SpuVoronoiSimplexSolver::closest(Vectormath::Aos::Vector3& v) { bool succes = updateClosestVectorAndPoints(); v = m_cachedV; return succes; } float SpuVoronoiSimplexSolver::maxVertex() { int i, numverts = numVertices(); float maxV = float(0.); for (i=0;i= float(0.0) && d4 <= d3) { result.m_closestPointOnSimplex = Vectormath::Aos::Point3(b); result.m_usedVertices.usedVertexB = true; result.setBarycentricCoordinates(0,1,0); return true; // b; // barycentric coordinates (0,1,0) } // Check if P in edge region of AB, if so return projection of P onto AB float vc = d1*d4 - d3*d2; if (vc <= float(0.0) && d1 >= float(0.0) && d3 <= float(0.0)) { float v = d1 / (d1 - d3); result.m_closestPointOnSimplex = Vectormath::Aos::Point3(a + v * ab); result.m_usedVertices.usedVertexA = true; result.m_usedVertices.usedVertexB = true; result.setBarycentricCoordinates(1-v,v,0); return true; //return a + v * ab; // barycentric coordinates (1-v,v,0) } // Check if P in vertex region outside C Vectormath::Aos::Vector3 cp = p - c; float d5 = dot(ab,cp); float d6 = dot(ac,cp); if (d6 >= float(0.0) && d5 <= d6) { result.m_closestPointOnSimplex = Vectormath::Aos::Point3(c); result.m_usedVertices.usedVertexC = true; result.setBarycentricCoordinates(0,0,1); return true;//c; // barycentric coordinates (0,0,1) } // Check if P in edge region of AC, if so return projection of P onto AC float vb = d5*d2 - d1*d6; if (vb <= float(0.0) && d2 >= float(0.0) && d6 <= float(0.0)) { float w = d2 / (d2 - d6); result.m_closestPointOnSimplex = Vectormath::Aos::Point3(a + w * ac); result.m_usedVertices.usedVertexA = true; result.m_usedVertices.usedVertexC = true; result.setBarycentricCoordinates(1-w,0,w); return true; //return a + w * ac; // barycentric coordinates (1-w,0,w) } // Check if P in edge region of BC, if so return projection of P onto BC float va = d3*d6 - d5*d4; if (va <= float(0.0) && (d4 - d3) >= float(0.0) && (d5 - d6) >= float(0.0)) { float w = (d4 - d3) / ((d4 - d3) + (d5 - d6)); result.m_closestPointOnSimplex = Vectormath::Aos::Point3(b + w * (c - b)); result.m_usedVertices.usedVertexB = true; result.m_usedVertices.usedVertexC = true; result.setBarycentricCoordinates(0,1-w,w); return true; // return b + w * (c - b); // barycentric coordinates (0,1-w,w) } // P inside face region. Compute Q through its barycentric coordinates (u,v,w) float denom = float(1.0) / (va + vb + vc); float v = vb * denom; float w = vc * denom; result.m_closestPointOnSimplex = Vectormath::Aos::Point3(a + ab * v + ac * w); result.m_usedVertices.usedVertexA = true; result.m_usedVertices.usedVertexB = true; result.m_usedVertices.usedVertexC = true; result.setBarycentricCoordinates(1-v-w,v,w); return true; // return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = float(1.0) - v - w } // This is specifically just removing duplicate indices. int SpuVoronoiSimplexSolver::RemoveDegenerateIndices (const int* inArray, int numIndices, int* outArray) const { int outIndex = 0; for (int firstIndex=0; firstIndex