#include "btMultiBodyJointLimitConstraint.h" #include "btMultiBody.h" #include "btMultiBodyLinkCollider.h" #include "BulletCollision/CollisionDispatch/btCollisionObject.h" btMultiBodyJointLimitConstraint::btMultiBodyJointLimitConstraint(btMultiBody* body, int link, btScalar lower, btScalar upper) :btMultiBodyConstraint(body,body,link,link,2,true), m_lowerBound(lower), m_upperBound(upper) { // the data.m_jacobians never change, so may as well // initialize them here // note: we rely on the fact that data.m_jacobians are // always initialized to zero by the Constraint ctor // row 0: the lower bound jacobianA(0)[6 + link] = 1; // row 1: the upper bound jacobianB(1)[6 + link] = -1; } btMultiBodyJointLimitConstraint::~btMultiBodyJointLimitConstraint() { } int btMultiBodyJointLimitConstraint::getIslandIdA() const { return m_bodyA->getLinkCollider(0)->getIslandTag(); } int btMultiBodyJointLimitConstraint::getIslandIdB() const { return m_bodyB->getLinkCollider(0)->getIslandTag(); } void btMultiBodyJointLimitConstraint::createConstraintRows(btMultiBodyConstraintArray& constraintRows, btMultiBodyJacobianData& data, const btContactSolverInfo& infoGlobal) { // only positions need to be updated -- data.m_jacobians and force // directions were set in the ctor and never change. // row 0: the lower bound setPosition(0, m_bodyA->getJointPos(m_linkA) - m_lowerBound); // row 1: the upper bound setPosition(1, m_upperBound - m_bodyA->getJointPos(m_linkA)); for (int row=0;rowgetNumLinks() + 6; constraintRow.m_deltaVelAindex = multiBodyA->getCompanionId(); if (constraintRow.m_deltaVelAindex <0) { constraintRow.m_deltaVelAindex = data.m_deltaVelocities.size(); multiBodyA->setCompanionId(constraintRow.m_deltaVelAindex); data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofA); } else { btAssert(data.m_deltaVelocities.size() >= constraintRow.m_deltaVelAindex+ndofA); } constraintRow.m_jacAindex = data.m_jacobians.size(); data.m_jacobians.resize(data.m_jacobians.size()+ndofA); data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofA); btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size()); for (int i=0;icalcAccelerationDeltas(&data.m_jacobians[constraintRow.m_jacAindex],delta,data.scratch_r, data.scratch_v); } if (multiBodyB) { const int ndofB = multiBodyB->getNumLinks() + 6; constraintRow.m_deltaVelBindex = multiBodyB->getCompanionId(); if (constraintRow.m_deltaVelBindex <0) { constraintRow.m_deltaVelBindex = data.m_deltaVelocities.size(); multiBodyB->setCompanionId(constraintRow.m_deltaVelBindex); data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofB); } constraintRow.m_jacBindex = data.m_jacobians.size(); data.m_jacobians.resize(data.m_jacobians.size()+ndofB); for (int i=0;icalcAccelerationDeltas(&data.m_jacobians[constraintRow.m_jacBindex],&data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacBindex],data.scratch_r, data.scratch_v); } { btVector3 vec; btScalar denom0 = 0.f; btScalar denom1 = 0.f; btScalar* jacB = 0; btScalar* jacA = 0; btScalar* lambdaA =0; btScalar* lambdaB =0; int ndofA = 0; if (multiBodyA) { ndofA = multiBodyA->getNumLinks() + 6; jacA = &data.m_jacobians[constraintRow.m_jacAindex]; lambdaA = &data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacAindex]; for (int i = 0; i < ndofA; ++i) { float j = jacA[i] ; float l =lambdaA[i]; denom0 += j*l; } } if (multiBodyB) { const int ndofB = multiBodyB->getNumLinks() + 6; jacB = &data.m_jacobians[constraintRow.m_jacBindex]; lambdaB = &data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacBindex]; for (int i = 0; i < ndofB; ++i) { float j = jacB[i] ; float l =lambdaB[i]; denom1 += j*l; } } if (multiBodyA && (multiBodyA==multiBodyB)) { // ndof1 == ndof2 in this case for (int i = 0; i < ndofA; ++i) { denom1 += jacB[i] * lambdaA[i]; denom1 += jacA[i] * lambdaB[i]; } } float d = denom0+denom1; if (btFabs(d)>SIMD_EPSILON) { constraintRow.m_jacDiagABInv = 1.f/(d); } else { constraintRow.m_jacDiagABInv = 1.f; } } //compute rhs and remaining constraintRow fields btScalar rel_vel = 0.f; int ndofA = 0; int ndofB = 0; { btVector3 vel1,vel2; if (multiBodyA) { ndofA = multiBodyA->getNumLinks() + 6; btScalar* jacA = &data.m_jacobians[constraintRow.m_jacAindex]; for (int i = 0; i < ndofA ; ++i) rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i]; } if (multiBodyB) { ndofB = multiBodyB->getNumLinks() + 6; btScalar* jacB = &data.m_jacobians[constraintRow.m_jacBindex]; for (int i = 0; i < ndofB ; ++i) rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i]; } constraintRow.m_friction = combinedFrictionCoeff; } /* ///warm starting (or zero if disabled) if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING) { constraintRow.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor; if (constraintRow.m_appliedImpulse) { if (multiBodyA) { btScalar impulse = constraintRow.m_appliedImpulse; btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacAindex]; multiBodyA->applyDeltaVee(deltaV,impulse); applyDeltaVee(deltaV,impulse,constraintRow.m_deltaVelAindex,ndofA); } if (multiBodyB) { btScalar impulse = constraintRow.m_appliedImpulse; btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacBindex]; multiBodyB->applyDeltaVee(deltaV,impulse); applyDeltaVee(deltaV,impulse,constraintRow.m_deltaVelBindex,ndofB); } } } else */ { constraintRow.m_appliedImpulse = 0.f; } constraintRow.m_appliedPushImpulse = 0.f; { float desiredVelocity = -0.3; btScalar positionalError = 0.f; btScalar velocityError = - rel_vel;// * damping; btScalar erp = infoGlobal.m_erp2; if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold)) { erp = infoGlobal.m_erp; } if (penetration>0) { positionalError = 0; velocityError = -penetration / infoGlobal.m_timeStep; } else { positionalError = -penetration * erp/infoGlobal.m_timeStep; } btScalar penetrationImpulse = positionalError*constraintRow.m_jacDiagABInv; btScalar velocityImpulse = velocityError *constraintRow.m_jacDiagABInv; if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold)) { //combine position and velocity into rhs constraintRow.m_rhs = penetrationImpulse+velocityImpulse; constraintRow.m_rhsPenetration = 0.f; } else { //split position and velocity into rhs and m_rhsPenetration constraintRow.m_rhs = velocityImpulse; constraintRow.m_rhsPenetration = penetrationImpulse; } constraintRow.m_cfm = 0.f; constraintRow.m_lowerLimit = 0; constraintRow.m_upperLimit = 1e10f; } }