/* Bounding Volume Hierarchy, btDbvt.cpp Copyright (c) 2008 Nathanael Presson, as part of Bullet Physics Library This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "stdafx.h" #include "btDbvt.h" #include #include namespace btdbvt_internals { // typedef btAlignedObjectArray tNodeArray; // static inline int indexof(const btDbvt::Node* node) { return(node->parent->childs[1]==node); } // static inline btDbvt::Aabb merge( const btDbvt::Aabb& a, const btDbvt::Aabb& b) { btDbvt::Aabb res=a; res.mi.setMin(b.mi); res.mx.setMax(b.mx); return(res); } // volume+edge lengths static inline btScalar size(const btDbvt::Aabb& a) { const btVector3 edges=a.mx-a.mi; return( edges.x()*edges.y()*edges.z()+ edges.x()+edges.y()+edges.z()); } // Using manhattan distance heuristic static inline btScalar proximity( const btDbvt::Aabb& a, const btDbvt::Aabb& b) { const btVector3 d=(a.mi+a.mx)-(b.mi+b.mx); return(btFabs(d.x())+btFabs(d.y())+btFabs(d.z())); } // static inline bool contain( const btDbvt::Aabb& a, const btDbvt::Aabb& b) { return( (a.mi.x()<=b.mi.x())&& (a.mx.x()>=b.mx.x())&& (a.mi.y()<=b.mi.y())&& (a.mx.y()>=b.mx.y())&& (a.mi.z()<=b.mi.z())&& (a.mx.z()>=b.mx.z())); } // static inline void deletenode( btDbvt* pdbvt, btDbvt::Node* node) { if(pdbvt->m_stock) delete pdbvt->m_stock; pdbvt->m_stock=node; } // static inline void recursedeletenode( btDbvt* pdbvt, btDbvt::Node* node) { if(!node->isleaf()) { recursedeletenode(pdbvt,node->childs[0]); recursedeletenode(pdbvt,node->childs[1]); } if(node==pdbvt->m_root) pdbvt->m_root=0; deletenode(pdbvt,node); } // static inline btDbvt::Node* createnode( btDbvt* pdbvt, btDbvt::Node* parent, const btDbvt::Aabb& box, void* data) { btDbvt::Node* node; if(pdbvt->m_stock) { node=pdbvt->m_stock;pdbvt->m_stock=0; } else { node=new btDbvt::Node(); } node->parent = parent; node->box = box; node->data = data; node->childs[1] = 0; return(node); } // static inline void insertleaf( btDbvt* pdbvt, btDbvt::Node* root, btDbvt::Node* leaf) { if(!pdbvt->m_root) { pdbvt->m_root = leaf; leaf->parent = 0; } else { if(!root->isleaf()) { do { if( proximity(root->childs[0]->box,leaf->box)< proximity(root->childs[1]->box,leaf->box)) root=root->childs[0]; else root=root->childs[1]; } while(!root->isleaf()); } btDbvt::Node* prev=root->parent; btDbvt::Node* node=createnode(pdbvt,prev,merge(leaf->box,root->box),0); if(prev) { prev->childs[indexof(root)] = node; node->childs[0] = root;root->parent=node; node->childs[1] = leaf;leaf->parent=node; do { if(contain(prev->box,node->box)) break; else prev->box=merge(prev->childs[0]->box,prev->childs[1]->box); node=prev; } while(0!=(prev=node->parent)); } else { node->childs[0] = root;root->parent=node; node->childs[1] = leaf;leaf->parent=node; pdbvt->m_root = node; } } ++pdbvt->m_nleafs; } // static inline btDbvt::Node* removeleaf( btDbvt* pdbvt, btDbvt::Node* leaf) { --pdbvt->m_nleafs; if(leaf==pdbvt->m_root) { pdbvt->m_root=0; return(0); } else { btDbvt::Node* parent=leaf->parent; btDbvt::Node* prev=parent->parent; btDbvt::Node* sibling=parent->childs[1-indexof(leaf)]; if(prev) { prev->childs[indexof(parent)]=sibling; sibling->parent=prev; deletenode(pdbvt,parent); while(prev) { const btDbvt::Aabb pb=prev->box; prev->box = merge(prev->childs[0]->box,prev->childs[1]->box); if(0==memcmp(&pb,&prev->box,sizeof(pb))) break; sibling = prev; prev = prev->parent; } return(prev?prev:pdbvt->m_root); } else { pdbvt->m_root=sibling; sibling->parent=0; deletenode(pdbvt,parent); return(pdbvt->m_root); } } } // static void fetchleafs( btDbvt::Node* root, tNodeArray& leafs) { if(root->isinternal()) { fetchleafs(root->childs[0],leafs); fetchleafs(root->childs[1],leafs); } else { leafs.push_back(root); } } // static void split( const tNodeArray& leafs, tNodeArray& left, tNodeArray& right, const btVector3& org, const btVector3& axis) { left.resize(0); right.resize(0); for(int i=0,ni=leafs.size();ibox.Center()-org)<0) left.push_back(leafs[i]); else right.push_back(leafs[i]); } } // static btDbvt::Aabb bounds( const tNodeArray& leafs) { btDbvt::Aabb box=leafs[0]->box; for(int i=1,ni=leafs.size();ibox); } return(box); } // static void bottomup( btDbvt* pdbvt, tNodeArray& leafs) { while(leafs.size()>1) { btScalar minsize=SIMD_INFINITY; int minidx[2]={-1,-1}; for(int i=0;ibox,leafs[j]->box)); if(szbox,n[1]->box),0); p->childs[0] = n[0]; p->childs[1] = n[1]; n[0]->parent = p; n[1]->parent = p; leafs[minidx[0]] = p; leafs.swap(minidx[1],leafs.size()-1); leafs.pop_back(); } } // static btDbvt::Node* topdown(btDbvt* pdbvt, tNodeArray& leafs) { static const btVector3 axis[]={btVector3(1,0,0), btVector3(0,1,0), btVector3(0,0,1)}; if(leafs.size()>1) { const btDbvt::Aabb box=bounds(leafs); const btVector3 org=box.Center(); tNodeArray sets[2]; int bestaxis=-1; int bestmidp=leafs.size(); sets[0].reserve(leafs.size()); sets[1].reserve(leafs.size()); for(int i=0;i<3;++i) { split(leafs,sets[0],sets[1],org,axis[i]); if((sets[0].size()>0)&&(sets[1].size()>0)) { const int midp=abs(sets[0].size()-sets[1].size()); if(midp=0) { split(leafs,sets[0],sets[1],org,axis[bestaxis]); } else { sets[0].resize(0); sets[1].resize(0); for(int i=0,ni=leafs.size();ichilds[0]=topdown(pdbvt,sets[0]); node->childs[1]=topdown(pdbvt,sets[1]); node->childs[0]->parent=node; node->childs[1]->parent=node; return(node); } return(leafs[0]); } } using namespace btdbvt_internals; // // Api // // btDbvt* btDbvt::Create() { btDbvt* pdbvt = new btDbvt(); pdbvt->m_nleafs = 0; pdbvt->m_root = 0; pdbvt->m_stock = 0; return(pdbvt); } // void btDbvt::Delete() { if(m_root) recursedeletenode(this,m_root); if(m_stock) delete m_stock; delete this; } // void btDbvt::OptimizeBottomUp() { if(m_root) { tNodeArray leafs; leafs.reserve(m_nleafs); fetchleafs(m_root,leafs); for(int i=0,ni=leafs.size();i0) { if(contain(leaf->box,box)) return(false); const btVector3 vm(margin,margin,margin); box.mi-=vm;box.mx+=vm; } Node* root=removeleaf(this,leaf); leaf->box=box; insertleaf(this,root,leaf); return(true); } // void btDbvt::Remove( Node* leaf) { removeleaf(this,leaf); deletenode(this,leaf); }