/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2007 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ ///btDbvtBroadphase implementation by Nathanael Presson #include "btDbvtBroadphase.h" // // Profiling // #if DBVT_BP_PROFILE #include struct ProfileScope { ProfileScope(btClock& clock,unsigned long& value) { m_clock=&clock; m_value=&value; m_base=clock.getTimeMicroseconds(); } ~ProfileScope() { (*m_value)+=m_clock->getTimeMicroseconds()-m_base; } btClock* m_clock; unsigned long* m_value; unsigned long m_base; }; #define SPC(_value_) ProfileScope spc_scope(m_clock,_value_) #else #define SPC(_value_) #endif // // Helpers // // template static inline void listappend(T* item,T*& list) { item->links[0]=0; item->links[1]=list; if(list) list->links[0]=item; list=item; } // template static inline void listremove(T* item,T*& list) { if(item->links[0]) item->links[0]->links[1]=item->links[1]; else list=item->links[1]; if(item->links[1]) item->links[1]->links[0]=item->links[0]; } // template static inline int listcount(T* root) { int n=0; while(root) { ++n;root=root->links[1]; } return(n); } // template static inline void clear(T& value) { static const struct ZeroDummy : T {} zerodummy; value=zerodummy; } // // Colliders // /* Leaf collider */ struct btDbvtLeafCollider : btDbvt::ICollide { btDbvtBroadphase* pbp; btDbvtProxy* ppx; btDbvtLeafCollider(btDbvtBroadphase* p,btDbvtProxy* px) : pbp(p),ppx(px) {} void Process(const btDbvt::Node* na) { const btDbvt::Node* nb=ppx->leaf; if(nb!=na) { btDbvtProxy* pa=(btDbvtProxy*)na->data; btDbvtProxy* pb=(btDbvtProxy*)nb->data; #if DBVT_BP_DISCRETPAIRS if(Intersect(pa->aabb,pb->aabb)) #endif { if(pa>pb) btSwap(pa,pb); pbp->m_paircache->addOverlappingPair(pa,pb); } } } }; /* Tree collider */ struct btDbvtTreeCollider : btDbvt::ICollide { btDbvtBroadphase* pbp; btDbvtTreeCollider(btDbvtBroadphase* p) : pbp(p) {} void Process(const btDbvt::Node* na,const btDbvt::Node* nb) { btDbvtProxy* pa=(btDbvtProxy*)na->data; btDbvtProxy* pb=(btDbvtProxy*)nb->data; #if DBVT_BP_DISCRETPAIRS if(Intersect(pa->aabb,pb->aabb)) #endif { if(pa>pb) btSwap(pa,pb); pbp->m_paircache->addOverlappingPair(pa,pb); } } }; // // btDbvtBroadphase // // btDbvtBroadphase::btDbvtBroadphase(btOverlappingPairCache* paircache) { btDbvt::benchmark(); m_releasepaircache = (paircache!=0)?false:true; m_predictedframes = 2; m_stageCurrent = 0; m_fupdates = 1; m_dupdates = 1; m_paircache = paircache? paircache : new(btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16)) btHashedOverlappingPairCache(); m_gid = 0; m_pid = 0; for(int i=0;i<=STAGECOUNT;++i) { m_stageRoots[i]=0; } #if DBVT_BP_PROFILE clear(m_profiling); #endif } // btDbvtBroadphase::~btDbvtBroadphase() { if(m_releasepaircache) btAlignedFree(m_paircache); } // btBroadphaseProxy* btDbvtBroadphase::createProxy( const btVector3& aabbMin, const btVector3& aabbMax, int /*shapeType*/, void* userPtr, short int collisionFilterGroup, short int collisionFilterMask, btDispatcher* /*dispatcher*/, void* /*multiSapProxy*/) { btDbvtProxy* proxy=new(btAlignedAlloc(sizeof(btDbvtProxy),16)) btDbvtProxy( userPtr, collisionFilterGroup, collisionFilterMask); proxy->aabb = btDbvtAabbMm::FromMM(aabbMin,aabbMax); proxy->leaf = m_sets[0].insert(proxy->aabb,proxy); proxy->stage = m_stageCurrent; proxy->m_uniqueId = ++m_gid; listappend(proxy,m_stageRoots[m_stageCurrent]); return(proxy); } // void btDbvtBroadphase::destroyProxy( btBroadphaseProxy* absproxy, btDispatcher* dispatcher) { btDbvtProxy* proxy=(btDbvtProxy*)absproxy; if(proxy->stage==STAGECOUNT) m_sets[1].remove(proxy->leaf); else m_sets[0].remove(proxy->leaf); listremove(proxy,m_stageRoots[proxy->stage]); m_paircache->removeOverlappingPairsContainingProxy(proxy,dispatcher); btAlignedFree(proxy); } // void btDbvtBroadphase::setAabb( btBroadphaseProxy* absproxy, const btVector3& aabbMin, const btVector3& aabbMax, btDispatcher* /*dispatcher*/) { btDbvtProxy* proxy=(btDbvtProxy*)absproxy; btDbvtAabbMm aabb=btDbvtAabbMm::FromMM(aabbMin,aabbMax); if(proxy->stage==STAGECOUNT) {/* fixed -> dynamic set */ m_sets[1].remove(proxy->leaf); proxy->leaf=m_sets[0].insert(aabb,proxy); } else {/* dynamic set */ if(Intersect(proxy->leaf->volume,aabb)) {/* Moving */ const btVector3 delta=(aabbMin+aabbMax)/2-proxy->aabb.Center(); #ifdef DBVT_BP_MARGIN m_sets[0].update(proxy->leaf,aabb,delta*m_predictedframes,DBVT_BP_MARGIN); #else m_sets[0].update(proxy->leaf,aabb,delta*m_predictedframes); #endif } else {/* Teleporting */ m_sets[0].update(proxy->leaf,aabb); } } listremove(proxy,m_stageRoots[proxy->stage]); proxy->aabb = aabb; proxy->stage = m_stageCurrent; listappend(proxy,m_stageRoots[m_stageCurrent]); } // void btDbvtBroadphase::calculateOverlappingPairs(btDispatcher* dispatcher) { collide(dispatcher); #if DBVT_BP_PROFILE if(0==(m_pid%DBVT_BP_PROFILING_RATE)) { printf("fixed(%u) dynamics(%u) pairs(%u)\r\n",m_sets[1].m_leafs,m_sets[0].m_leafs,m_paircache->getNumOverlappingPairs()); printf("mode: %s\r\n",m_mode==MODE_FULL?"full":"incremental"); printf("cleanup: %s\r\n",m_cleanupmode==CLEANUP_FULL?"full":"incremental"); unsigned int total=m_profiling.m_total; if(total<=0) total=1; printf("ddcollide: %u%% (%uus)\r\n",(50+m_profiling.m_ddcollide*100)/total,m_profiling.m_ddcollide/DBVT_BP_PROFILING_RATE); printf("fdcollide: %u%% (%uus)\r\n",(50+m_profiling.m_fdcollide*100)/total,m_profiling.m_fdcollide/DBVT_BP_PROFILING_RATE); printf("cleanup: %u%% (%uus)\r\n",(50+m_profiling.m_cleanup*100)/total,m_profiling.m_cleanup/DBVT_BP_PROFILING_RATE); printf("total: %uus\r\n",total/DBVT_BP_PROFILING_RATE); const unsigned long sum=m_profiling.m_ddcollide+ m_profiling.m_fdcollide+ m_profiling.m_cleanup; printf("leaked: %u%% (%uus)\r\n",100-((50+sum*100)/total),(total-sum)/DBVT_BP_PROFILING_RATE); printf("job counts: %u%%\r\n",(m_profiling.m_jobcount*100)/((m_sets[0].m_leafs+m_sets[1].m_leafs)*DBVT_BP_PROFILING_RATE)); clear(m_profiling); m_clock.reset(); } #endif } // void btDbvtBroadphase::collide(btDispatcher* dispatcher) { SPC(m_profiling.m_total); /* optimize */ m_sets[0].optimizeIncremental(1+(m_sets[0].m_leaves*m_dupdates)/100); m_sets[1].optimizeIncremental(1+(m_sets[1].m_leaves*m_fupdates)/100); /* dynamic -> fixed set */ m_stageCurrent=(m_stageCurrent+1)%STAGECOUNT; btDbvtProxy* current=m_stageRoots[m_stageCurrent]; if(current) { btDbvtTreeCollider collider(this); do { btDbvtProxy* next=current->links[1]; listremove(current,m_stageRoots[current->stage]); listappend(current,m_stageRoots[STAGECOUNT]); btDbvt::collideTT(m_sets[1].m_root,current->leaf,collider); m_sets[0].remove(current->leaf); current->leaf = m_sets[1].insert(current->aabb,current); current->stage = STAGECOUNT; current = next; } while(current); } /* collide dynamics */ { btDbvtTreeCollider collider(this); { SPC(m_profiling.m_fdcollide); btDbvt::collideTT(m_sets[0].m_root,m_sets[1].m_root,collider); } { SPC(m_profiling.m_ddcollide); btDbvt::collideTT(m_sets[0].m_root,m_sets[0].m_root,collider); } } /* clean up */ { SPC(m_profiling.m_cleanup); btBroadphasePairArray& pairs=m_paircache->getOverlappingPairArray(); if(pairs.size()>0) { for(int i=0,ni=pairs.size();iaabb,pb->aabb)) { if(pa>pb) btSwap(pa,pb); m_paircache->removeOverlappingPair(pa,pb,dispatcher); --ni;--i; } } } } ++m_pid; } // btOverlappingPairCache* btDbvtBroadphase::getOverlappingPairCache() { return(m_paircache); } // const btOverlappingPairCache* btDbvtBroadphase::getOverlappingPairCache() const { return(m_paircache); } // void btDbvtBroadphase::getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const { btDbvtAabbMm bounds; if(!m_sets[0].empty()) if(!m_sets[1].empty()) Merge( m_sets[0].m_root->volume, m_sets[1].m_root->volume,bounds); else bounds=m_sets[0].m_root->volume; else if(!m_sets[1].empty()) bounds=m_sets[1].m_root->volume; else bounds=btDbvtAabbMm::FromCR(btVector3(0,0,0),0); aabbMin=bounds.Mins(); aabbMax=bounds.Maxs(); } // void btDbvtBroadphase::printStats() {} #if DBVT_BP_PROFILE #undef SPC #endif