#include #include "Bullet3Common/b3Logging.h" #include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h" #include "Bullet3Common/b3CommandLineArgs.h" #include "Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h" #include "Bullet3OpenCL/NarrowphaseCollision/kernels/mprKernels.h" #include "Bullet3OpenCL/NarrowphaseCollision/kernels/satConcaveKernels.h" #include "Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.h" #include "Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.h" #include "Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.h" #ifdef B3_USE_ZLIB #include "minizip/unzip.h" #endif #include "Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h" extern int gArgc; extern char** gArgv; namespace { struct ExecuteBullet3NarrowphaseKernels : public ::testing::Test { cl_context m_clContext; cl_device_id m_clDevice; cl_command_queue m_clQueue; char* m_clDeviceName; cl_platform_id m_platformId; ExecuteBullet3NarrowphaseKernels() : m_clDeviceName(0), m_clContext(0), m_clDevice(0), m_clQueue(0), m_platformId(0) { // You can do set-up work for each test here. initCL(); } virtual ~ExecuteBullet3NarrowphaseKernels() { // You can do clean-up work that doesn't throw exceptions here. exitCL(); } // If the constructor and destructor are not enough for setting up // and cleaning up each test, you can define the following methods: #include "initCL.h" virtual void SetUp() { // Code here will be called immediately after the constructor (right // before each test). } virtual void TearDown() { // Code here will be called immediately after each test (right // before the destructor). } }; #if 0 TEST_F(ExecuteBullet3NarrowphaseKernels,satKernelsCL) { cl_int errNum=0; char flags[1024]={0}; cl_program satProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext,m_clDevice,satKernelsCL,&errNum,flags,0,true); ASSERT_EQ(CL_SUCCESS,errNum); { cl_kernel m_findSeparatingAxisKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satKernelsCL, "findSeparatingAxisKernel",&errNum,satProg ); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(m_findSeparatingAxisKernel ); } { cl_kernel m_findSeparatingAxisVertexFaceKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satKernelsCL, "findSeparatingAxisVertexFaceKernel",&errNum,satProg ); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(m_findSeparatingAxisVertexFaceKernel); } { cl_kernel m_findSeparatingAxisEdgeEdgeKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satKernelsCL, "findSeparatingAxisEdgeEdgeKernel",&errNum,satProg ); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(m_findSeparatingAxisEdgeEdgeKernel); } { cl_kernel m_findConcaveSeparatingAxisKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satKernelsCL, "findConcaveSeparatingAxisKernel",&errNum,satProg ); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(m_findConcaveSeparatingAxisKernel ); } { cl_kernel m_findCompoundPairsKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satKernelsCL, "findCompoundPairsKernel",&errNum,satProg ); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(m_findCompoundPairsKernel); } { cl_kernel m_processCompoundPairsKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satKernelsCL, "processCompoundPairsKernel",&errNum,satProg ); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(m_processCompoundPairsKernel); } clReleaseProgram(satProg); } TEST_F(ExecuteBullet3NarrowphaseKernels,satConcaveKernelsCL) { cl_int errNum=0; char flags[1024]={0}; cl_program satConcaveProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext,m_clDevice,satConcaveKernelsCL,&errNum,flags,0,true); ASSERT_EQ(CL_SUCCESS,errNum); { cl_kernel m_findConcaveSeparatingAxisVertexFaceKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satConcaveKernelsCL, "findConcaveSeparatingAxisVertexFaceKernel",&errNum,satConcaveProg ); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(m_findConcaveSeparatingAxisVertexFaceKernel); } { cl_kernel m_findConcaveSeparatingAxisEdgeEdgeKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satConcaveKernelsCL, "findConcaveSeparatingAxisEdgeEdgeKernel",&errNum,satConcaveProg ); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(m_findConcaveSeparatingAxisEdgeEdgeKernel); } clReleaseProgram(satConcaveProg); } TEST_F(ExecuteBullet3NarrowphaseKernels,satClipKernelsCL) { char flags[1024]={0}; cl_int errNum=0; //#ifdef CL_PLATFORM_INTEL // sprintf(flags,"-g -s \"%s\"","C:/develop/bullet3_experiments2/opencl/gpu_narrowphase/kernels/satClipHullContacts.cl"); //#endif cl_program satClipContactsProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext,m_clDevice,satClipKernelsCL,&errNum,flags,0,true); ASSERT_EQ(CL_SUCCESS,errNum); { cl_kernel m_clipHullHullKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satClipKernelsCL, "clipHullHullKernel",&errNum,satClipContactsProg); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(m_clipHullHullKernel); } { cl_kernel m_clipCompoundsHullHullKernel = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satClipKernelsCL, "clipCompoundsHullHullKernel",&errNum,satClipContactsProg); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(m_clipCompoundsHullHullKernel); } { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satClipKernelsCL, "findClippingFacesKernel",&errNum,satClipContactsProg); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(k); } { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satClipKernelsCL, "clipFacesAndFindContactsKernel",&errNum,satClipContactsProg); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(k); } { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satClipKernelsCL, "clipHullHullConcaveConvexKernel",&errNum,satClipContactsProg); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(k); } { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,satClipKernelsCL, "newContactReductionKernel",&errNum,satClipContactsProg); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(k); } clReleaseProgram(satClipContactsProg); } TEST_F(ExecuteBullet3NarrowphaseKernels,bvhTraversalKernels) { cl_int errNum=0; cl_program bvhTraversalProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext,m_clDevice,bvhTraversalKernelCL,&errNum,"",0,true); ASSERT_EQ(CL_SUCCESS,errNum); { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,bvhTraversalKernelCL, "bvhTraversalKernel",&errNum,bvhTraversalProg,""); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(k); } clReleaseProgram(bvhTraversalProg); } TEST_F(ExecuteBullet3NarrowphaseKernels,primitiveContactsKernelsCL) { cl_int errNum=0; cl_program primitiveContactsProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext,m_clDevice,primitiveContactsKernelsCL,&errNum,"",0,true); ASSERT_EQ(CL_SUCCESS,errNum); { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,primitiveContactsKernelsCL, "primitiveContactsKernel",&errNum,primitiveContactsProg,""); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(k); } { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,primitiveContactsKernelsCL, "findConcaveSphereContactsKernel",&errNum,primitiveContactsProg ); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(k); } { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice,primitiveContactsKernelsCL, "processCompoundPairsPrimitivesKernel",&errNum,primitiveContactsProg,""); ASSERT_EQ(CL_SUCCESS,errNum); clReleaseKernel(k); } clReleaseProgram(primitiveContactsProg); } #endif unsigned char* openFile(const char* fileName, int* sizeInBytesPtr) { *sizeInBytesPtr = 0; unsigned char* buffer = 0; const char* prefix[] = {"./", "./data/", "../data/", "../../data/", "../../../data/", "../../../../data/"}; int numPrefixes = sizeof(prefix) / sizeof(const char*); char relativeFileName[1024]; #ifdef B3_USE_ZLIB { FILE* f = 0; int result = 0; for (int i = 0; !f && i < numPrefixes; i++) { sprintf(relativeFileName, "%s%s", prefix[i], "unittest_data.zip"); f = fopen(relativeFileName, "rb"); } if (f) { fclose(f); unzFile zipfile = unzOpen(relativeFileName); if (zipfile == NULL) { printf("%s: not found\n", relativeFileName); } // Get info about the zip file unz_global_info global_info; result = unzGetGlobalInfo(zipfile, &global_info); if (result != UNZ_OK) { b3Printf("could not read file global info\n"); unzClose(zipfile); } else { result = unzLocateFile(zipfile, fileName, 0); if (result == UNZ_OK) { unz_file_info info; result = unzGetCurrentFileInfo(zipfile, &info, NULL, 0, NULL, 0, NULL, 0); if (result != UNZ_OK) { b3Printf("unzGetCurrentFileInfo() != UNZ_OK (%d)\n", result); } else { result = unzOpenCurrentFile(zipfile); if (result == UNZ_OK) { buffer = (unsigned char*)malloc(info.uncompressed_size); result = unzReadCurrentFile(zipfile, buffer, info.uncompressed_size); if (result < 0) { free(buffer); buffer = 0; } else { *sizeInBytesPtr = info.uncompressed_size; } unzCloseCurrentFile(zipfile); } else { b3Printf("cannot open file %s!\n", fileName); } } } else { b3Printf("cannot find file %s\n", fileName); } unzClose(zipfile); } } } #endif //B3_USE_ZLIB if (!buffer) { FILE* f = 0; int result = 0; for (int i = 0; !f && i < numPrefixes; i++) { sprintf(relativeFileName, "%s%s", prefix[i], fileName); f = fopen(relativeFileName, "rb"); } //first try from data.zip, otherwise directly load the file from disk if (f) { int sizeInBytes = 0; if (fseek(f, 0, SEEK_END) || (sizeInBytes = ftell(f)) == EOF || fseek(f, 0, SEEK_SET)) { b3Printf("error, cannot get file size\n"); } buffer = (unsigned char*)malloc(sizeInBytes); int actualRead = fread(buffer, sizeInBytes, 1, f); if (actualRead != 1) { free(buffer); buffer = 0; } else { *sizeInBytesPtr = sizeInBytes; } fclose(f); } } return buffer; } void testLauncher(const char* fileName2, b3LauncherCL& launcher, cl_context ctx) { int sizeInBytes = 0; unsigned char* buf = openFile(fileName2, &sizeInBytes); ASSERT_FALSE(buf == NULL); if (buf) { int serializedBytes = launcher.deserializeArgs(buf, sizeInBytes, ctx); int num = *(int*)&buf[serializedBytes]; launcher.launch1D(num); free(buf); //this clFinish is for testing on errors } } TEST_F(ExecuteBullet3NarrowphaseKernels, mprKernelsCL) { cl_int errNum = 0; const char* srcConcave = satConcaveKernelsCL; char flags[1024] = {0}; cl_program mprProg = b3OpenCLUtils::compileCLProgramFromString(m_clContext, m_clDevice, mprKernelsCL, &errNum, flags, 0, true); ASSERT_EQ(CL_SUCCESS, errNum); { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, mprKernelsCL, "mprPenetrationKernel", &errNum, mprProg); ASSERT_EQ(CL_SUCCESS, errNum); if (1) { const char* fileNames[] = {"mprPenetrationKernel60.bin", "mprPenetrationKernel61.bin", "mprPenetrationKernel70.bin", "mprPenetrationKernel128.bin"}; int results[] = {0, 1, 46, 98}; int numTests = sizeof(fileNames) / sizeof(const char*); for (int i = 0; i < numTests; i++) { b3LauncherCL launcher(m_clQueue, k, fileNames[i]); testLauncher(fileNames[i], launcher, m_clContext); clFinish(m_clQueue); ASSERT_EQ(launcher.getNumArguments(), 11); b3KernelArgData data = launcher.getArgument(8); ASSERT_TRUE(data.m_isBuffer); b3OpenCLArray totalContactsOut(this->m_clContext, this->m_clQueue); totalContactsOut.setFromOpenCLBuffer(data.m_clBuffer, 1); int numContacts = totalContactsOut.at(0); ASSERT_EQ(results[i], numContacts); } //printf("numContacts = %d\n",numContacts); //nContacts = m_totalContactsOut.at(0); } clReleaseKernel(k); } { cl_kernel k = b3OpenCLUtils::compileCLKernelFromString(m_clContext, m_clDevice, mprKernelsCL, "findSeparatingAxisUnitSphereKernel", &errNum, mprProg); ASSERT_EQ(CL_SUCCESS, errNum); clReleaseKernel(k); } clReleaseProgram(mprProg); } }; // namespace