/* acosf4 - Copyright (C) 2006, 2007 Sony Computer Entertainment Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the Sony Computer Entertainment Inc nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef ___SIMD_MATH_ACOSF4_H___ #define ___SIMD_MATH_ACOSF4_H___ #include #include #include // // Computes the inverse cosine of all four slots of x // static inline vector float _acosf4 (vector float x) { vec_float4 result, xabs; vec_float4 t1; vec_float4 xabs2, xabs4; vec_float4 hi, lo; vec_float4 neg, pos; vec_uint4 select; xabs = (vec_float4)(spu_rlmask(spu_sl((vec_uint4)(x), 1), -1)); select = (vec_uint4)(spu_rlmaska((vector signed int)(x), -31)); t1 = _sqrtf4(spu_sub( spu_splats(1.0f), xabs)); /* Instruction counts can be reduced if the polynomial was * computed entirely from nested (dependent) fma's. However, * to reduce the number of pipeline stalls, the polygon is evaluated * in two halves (hi amd lo). */ xabs2 = spu_mul(xabs, xabs); xabs4 = spu_mul(xabs2, xabs2); hi = spu_madd(spu_splats(-0.0012624911f), xabs, spu_splats(0.0066700901f)); hi = spu_madd(hi, xabs, spu_splats(-0.0170881256f)); hi = spu_madd(hi, xabs, spu_splats( 0.0308918810f)); lo = spu_madd(spu_splats(-0.0501743046f), xabs, spu_splats(0.0889789874f)); lo = spu_madd(lo, xabs, spu_splats(-0.2145988016f)); lo = spu_madd(lo, xabs, spu_splats( 1.5707963050f)); result = spu_madd(hi, xabs4, lo); /* Adjust the result if x is negactive. */ neg = spu_nmsub(t1, result, spu_splats(3.1415926535898f)); pos = spu_mul(t1, result); result = spu_sel(pos, neg, select); return result; } #endif