//test addJointTorque #include "TestJointTorqueSetup.h" #include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h" TestJointTorqueSetup::TestJointTorqueSetup() { } TestJointTorqueSetup::~TestJointTorqueSetup() { } void TestJointTorqueSetup::initPhysics(GraphicsPhysicsBridge& gfxBridge) { int upAxis = 2; btVector4 colors[4] = { btVector4(1,0,0,1), btVector4(0,1,0,1), btVector4(0,1,1,1), btVector4(1,1,0,1), }; int curColor = 0; gfxBridge.setUpAxis(upAxis); this->createEmptyDynamicsWorld(); gfxBridge.createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->getDebugDrawer()->setDebugMode( //btIDebugDraw::DBG_DrawConstraints +btIDebugDraw::DBG_DrawWireframe +btIDebugDraw::DBG_DrawContactPoints +btIDebugDraw::DBG_DrawAabb );//+btIDebugDraw::DBG_DrawConstraintLimits); //create a static ground object if (0) { btVector3 groundHalfExtents(20,20,20); groundHalfExtents[upAxis]=1.f; btBoxShape* box = new btBoxShape(groundHalfExtents); box->initializePolyhedralFeatures(); gfxBridge.createCollisionShapeGraphicsObject(box); btTransform start; start.setIdentity(); btVector3 groundOrigin(0,0,0); groundOrigin[upAxis]=-1.5; start.setOrigin(groundOrigin); btRigidBody* body = createRigidBody(0,start,box); btVector4 color = colors[curColor]; curColor++; curColor&=3; gfxBridge.createRigidBodyGraphicsObject(body,color); } { bool floating = false; bool damping = true; bool gyro = true; int numLinks = 5; bool spherical = false; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals bool canSleep = false; bool selfCollide = false; btVector3 linkHalfExtents(0.05, 0.37, 0.1); btVector3 baseHalfExtents(0.05, 0.37, 0.1); btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f); //mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm //init the base btVector3 baseInertiaDiag(0.f, 0.f, 0.f); float baseMass = 1.f; if(baseMass) { btCollisionShape *pTempBox = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2])); pTempBox->calculateLocalInertia(baseMass, baseInertiaDiag); delete pTempBox; } bool isMultiDof = false; btMultiBody *pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep, isMultiDof); m_multiBody = pMultiBody; btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f); pMultiBody->setBasePos(basePosition); pMultiBody->setWorldToBaseRot(baseOriQuat); btVector3 vel(0, 0, 0); // pMultiBody->setBaseVel(vel); //init the links btVector3 hingeJointAxis(1, 0, 0); float linkMass = 1.f; btVector3 linkInertiaDiag(0.f, 0.f, 0.f); btCollisionShape *pTempBox = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); pTempBox->calculateLocalInertia(linkMass, linkInertiaDiag); delete pTempBox; //y-axis assumed up btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset ////// btScalar q0 = 0.f * SIMD_PI/ 180.f; btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0); quat0.normalize(); ///// for(int i = 0; i < numLinks; ++i) { if(!spherical) pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false); else //pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false); pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false); } //pMultiBody->finalizeMultiDof(); btMultiBodyDynamicsWorld* world = m_dynamicsWorld; /// world->addMultiBody(pMultiBody); btMultiBody* mbC = pMultiBody; mbC->setCanSleep(canSleep); mbC->setHasSelfCollision(selfCollide); mbC->setUseGyroTerm(gyro); // if(!damping) { mbC->setLinearDamping(0.f); mbC->setAngularDamping(0.f); }else { mbC->setLinearDamping(0.1f); mbC->setAngularDamping(0.9f); } // btVector3 gravity(0,0,0); //gravity[upAxis] = -9.81; m_dynamicsWorld->setGravity(gravity); ////////////////////////////////////////////// if(numLinks > 0) { btScalar q0 = 45.f * SIMD_PI/ 180.f; if(!spherical) if(mbC->isMultiDof()) mbC->setJointPosMultiDof(0, &q0); else mbC->setJointPos(0, q0); else { btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0); quat0.normalize(); mbC->setJointPosMultiDof(0, quat0); } } /// btAlignedObjectArray world_to_local; world_to_local.resize(pMultiBody->getNumLinks() + 1); btAlignedObjectArray local_origin; local_origin.resize(pMultiBody->getNumLinks() + 1); world_to_local[0] = pMultiBody->getWorldToBaseRot(); local_origin[0] = pMultiBody->getBasePos(); double friction = 1; { // float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1}; float quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()}; if (1) { btCollisionShape* box = new btBoxShape(baseHalfExtents); gfxBridge.createCollisionShapeGraphicsObject(box); btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1); col->setCollisionShape(box); btTransform tr; tr.setIdentity(); //if we don't set the initial pose of the btCollisionObject, the simulator will do this //when syncing the btMultiBody link transforms to the btMultiBodyLinkCollider tr.setOrigin(local_origin[0]); tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3])); col->setWorldTransform(tr); world->addCollisionObject(col, 2,1+2); btVector3 color(0.0,0.0,0.5); gfxBridge.createCollisionObjectGraphicsObject(col,color); col->setFriction(friction); pMultiBody->setBaseCollider(col); } } for (int i=0; i < pMultiBody->getNumLinks(); ++i) { const int parent = pMultiBody->getParent(i); world_to_local[i+1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent+1]; local_origin[i+1] = local_origin[parent+1] + (quatRotate(world_to_local[i+1].inverse() , pMultiBody->getRVector(i))); } for (int i=0; i < pMultiBody->getNumLinks(); ++i) { btVector3 posr = local_origin[i+1]; // float pos[4]={posr.x(),posr.y(),posr.z(),1}; float quat[4]={-world_to_local[i+1].x(),-world_to_local[i+1].y(),-world_to_local[i+1].z(),world_to_local[i+1].w()}; btCollisionShape* box = new btBoxShape(linkHalfExtents); gfxBridge.createCollisionShapeGraphicsObject(box); btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i); col->setCollisionShape(box); btTransform tr; tr.setIdentity(); tr.setOrigin(posr); tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3])); col->setWorldTransform(tr); col->setFriction(friction); world->addCollisionObject(col,2,1+2); btVector4 color = colors[curColor]; curColor++; curColor&=3; gfxBridge.createCollisionObjectGraphicsObject(col,color); pMultiBody->getLink(i).m_collider=col; } } } void TestJointTorqueSetup::stepSimulation(float deltaTime) { m_multiBody->addJointTorque(0, 10.0); m_dynamicsWorld->stepSimulation(deltaTime); }