// // Test_qtnorm.cpp // BulletTest // // Copyright (c) 2011 Apple Inc. // #include "LinearMath/btScalar.h" #if defined(BT_USE_SSE_IN_API) || defined(BT_USE_NEON) #include "Test_qtnorm.h" #include "vector.h" #include "Utils.h" #include "main.h" #include #include #include #define BT_OP(a) (a.normalize()) // reference code for testing purposes static inline btQuaternion& qtnorm_ref(btQuaternion& q1); static inline btQuaternion& qtnorm_ref(btQuaternion& q1) { float dot = q1.x() * q1.x() + q1.y() * q1.y() + q1.z() * q1.z() + q1.w() * q1.w(); dot = 1.0f / sqrtf(dot); q1.setValue(q1.x() * dot, q1.y() * dot, q1.z() * dot, q1.w() * dot); return q1; } #define LOOPCOUNT 1024 #define NUM_CYCLES 1000 int Test_qtnorm(void) { int i; btQuaternion q1, q2; float x, y, z, w, vNaN; vNaN = BT_NAN; // w channel NaN btQuaternion correct_res, test_res; for (i = 0; i < LOOPCOUNT; i++) { // Init the data x = RANDF_01; y = RANDF_01; z = RANDF_01; w = RANDF_01; q1.setValue(x, y, z, w); q2 = q1; correct_res.setValue(vNaN, vNaN, vNaN, vNaN); test_res.setValue(vNaN, vNaN, vNaN, vNaN); correct_res = qtnorm_ref(q1); test_res = BT_OP(q2); if (fabsf(correct_res.x() - test_res.x()) + fabsf(correct_res.y() - test_res.y()) + fabsf(correct_res.z() - test_res.z()) + fabsf(correct_res.w() - test_res.w()) > FLT_EPSILON * 10) { vlog( "Error - qtnorm result error! " "\ncorrect = (%10.7f, %10.7f, %10.7f, %10.7f) " "\ntested = (%10.7f, %10.7f, %10.7f, %10.7f) \n", correct_res.x(), correct_res.y(), correct_res.z(), correct_res.w(), test_res.x(), test_res.y(), test_res.z(), test_res.w()); return 1; } } #define DATA_SIZE LOOPCOUNT btQuaternion qt_arr0[DATA_SIZE]; btQuaternion qt_arr1[DATA_SIZE]; uint64_t scalarTime; uint64_t vectorTime; size_t j, k; { uint64_t startTime, bestTime, currentTime; bestTime = -1LL; scalarTime = 0; for (j = 0; j < NUM_CYCLES; j++) { for (k = 0; k < DATA_SIZE; k++) { x = RANDF_01; y = RANDF_01; z = RANDF_01; w = RANDF_01; qt_arr1[k].setValue(x, y, z, w); } startTime = ReadTicks(); for (k = 0; k + 4 <= LOOPCOUNT; k += 4) { size_t km = (k & (DATA_SIZE - 1)); qt_arr0[km] = qtnorm_ref(qt_arr1[km]); km++; qt_arr0[km] = qtnorm_ref(qt_arr1[km]); km++; qt_arr0[km] = qtnorm_ref(qt_arr1[km]); km++; qt_arr0[km] = qtnorm_ref(qt_arr1[km]); } currentTime = ReadTicks() - startTime; scalarTime += currentTime; if (currentTime < bestTime) bestTime = currentTime; } if (0 == gReportAverageTimes) scalarTime = bestTime; else scalarTime /= NUM_CYCLES; } { uint64_t startTime, bestTime, currentTime; bestTime = -1LL; vectorTime = 0; for (j = 0; j < NUM_CYCLES; j++) { for (k = 0; k < DATA_SIZE; k++) { x = RANDF_01; y = RANDF_01; z = RANDF_01; w = RANDF_01; qt_arr1[k].setValue(x, y, z, w); } startTime = ReadTicks(); for (k = 0; k + 4 <= LOOPCOUNT; k += 4) { size_t km = (k & (DATA_SIZE - 1)); qt_arr0[km] = BT_OP(qt_arr1[km]); km++; qt_arr0[km] = BT_OP(qt_arr1[km]); km++; qt_arr0[km] = BT_OP(qt_arr1[km]); km++; qt_arr0[km] = BT_OP(qt_arr1[km]); km++; } currentTime = ReadTicks() - startTime; vectorTime += currentTime; if (currentTime < bestTime) bestTime = currentTime; } if (0 == gReportAverageTimes) vectorTime = bestTime; else vectorTime /= NUM_CYCLES; } vlog("Timing:\n"); vlog(" \t scalar\t vector\n"); vlog(" \t%10.4f\t%10.4f\n", TicksToCycles(scalarTime) / LOOPCOUNT, TicksToCycles(vectorTime) / LOOPCOUNT); return 0; } #endif //BT_USE_SSE