#include "GLDebugDrawer.h" #include "BulletCollision/CollisionShapes/btMultiSphereShape.h" #include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h" #include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h" #include "BulletCollision/CollisionDispatch/btCollisionWorld.h" #include "LinearMath/btDefaultMotionState.h" #include "KinematicCharacterController.h" /* TODO: * Fix jitter * Interact with dynamic objects * Ride kinematicly animated platforms properly * More realistic (or maybe just a config option) falling * -> Should integrate falling velocity manually and use that in stepDown() * Support jumping * Support ducking */ class ClosestNotMeRayResultCallback : public btCollisionWorld::ClosestRayResultCallback { public: ClosestNotMeRayResultCallback (btCollisionObject* me) : btCollisionWorld::ClosestRayResultCallback(btVector3(0.0, 0.0, 0.0), btVector3(0.0, 0.0, 0.0)) { m_me = me; } virtual btScalar AddSingleResult(btCollisionWorld::LocalRayResult& rayResult,bool normalInWorldSpace) { if (rayResult.m_collisionObject == m_me) return 1.0; return ClosestRayResultCallback::AddSingleResult (rayResult, normalInWorldSpace); } protected: btCollisionObject* m_me; }; class ClosestNotMeConvexResultCallback : public btCollisionWorld::ClosestConvexResultCallback { public: ClosestNotMeConvexResultCallback (btCollisionObject* me) : btCollisionWorld::ClosestConvexResultCallback(btVector3(0.0, 0.0, 0.0), btVector3(0.0, 0.0, 0.0)) { m_me = me; } virtual btScalar AddSingleResult(btCollisionWorld::LocalConvexResult& convexResult,bool normalInWorldSpace) { if (convexResult.m_hitCollisionObject == m_me) return 1.0; return ClosestConvexResultCallback::AddSingleResult (convexResult, normalInWorldSpace); } protected: btCollisionObject* m_me; }; /* * Returns the reflection direction of a ray going 'direction' hitting a surface with normal 'normal' * * from: http://www-cs-students.stanford.edu/~adityagp/final/node3.html */ btVector3 computeReflectionDirection (const btVector3& direction, const btVector3& normal) { return direction - (btScalar(2.0) * direction.dot(normal)) * normal; } /* * Returns the portion of 'direction' that is parallel to 'normal' */ btVector3 parallelComponent (const btVector3& direction, const btVector3& normal) { btScalar magnitude = direction.dot(normal); return normal * magnitude; } /* * Returns the portion of 'direction' that is perpindicular to 'normal' */ btVector3 perpindicularComponent (const btVector3& direction, const btVector3& normal) { return direction - parallelComponent(direction, normal); } KinematicCharacterController::KinematicCharacterController () { m_turnAngle = btScalar(0.0); m_walkVelocity = btScalar(1.1) * 4.0; // 4 km/h -> 1.1 m/s m_shape = NULL; m_pairCache = NULL; m_collisionObject = NULL; } KinematicCharacterController::~KinematicCharacterController () { } void KinematicCharacterController::setup (btScalar height, btScalar width, btScalar stepHeight) { btVector3 spherePositions[2]; btScalar sphereRadii[2]; sphereRadii[0] = width; sphereRadii[1] = width; spherePositions[0] = btVector3 (0.0, (height/btScalar(2.0) ), 0.0); spherePositions[1] = btVector3 (0.0, (-height/btScalar(2.0)), 0.0); m_halfHeight = height/btScalar(2.0); m_shape = new btMultiSphereShape (btVector3(width/btScalar(2.0), height/btScalar(2.0), width/btScalar(2.0)), &spherePositions[0], &sphereRadii[0], 2); m_stepHeight = stepHeight; m_height = height; m_width = width; btTransform startTransform; startTransform.setIdentity (); startTransform.setOrigin (btVector3(0.0, 4.0, 0.0)); //btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform); m_collisionObject = new btCollisionObject (); m_collisionObject->setWorldTransform(startTransform); m_collisionObject->setCollisionShape (m_shape); m_collisionObject->setCollisionFlags (btCollisionObject::CF_NO_CONTACT_RESPONSE); } void KinematicCharacterController::destroy () { if (m_collisionObject) { delete m_collisionObject; } if (m_shape) { delete m_shape; } } btCollisionObject* KinematicCharacterController::getCollisionObject () { return m_collisionObject; } bool KinematicCharacterController::recoverFromPenetration (const btCollisionWorld* collisionWorld) { if (m_pairCache == NULL) return false; bool penetration = false; m_dispatcher->dispatchAllCollisionPairs (m_pairCache, collisionWorld->getDispatchInfo(), m_dispatcher); m_currentPosition = m_collisionObject->getWorldTransform().getOrigin(); btScalar maxPen = btScalar(0.0); for (int i = 0; i < m_pairCache->getNumOverlappingPairs(); i++) { m_manifoldArray.resize(0); btBroadphasePair* collisionPair = &m_pairCache->getOverlappingPairArray()[i]; if (collisionPair->m_algorithm) collisionPair->m_algorithm->getAllContactManifolds(m_manifoldArray); for (int j=0;jgetBody0() == m_collisionObject ? btScalar(-1.0) : btScalar(1.0); for (int p=0;pgetNumContacts();p++) { const btManifoldPoint&pt = manifold->getContactPoint(p); if (pt.getDistance() < 0.0) { if (pt.getDistance() < maxPen) { maxPen = pt.getDistance(); m_touchingNormal = pt.m_normalWorldOnB * directionSign;//?? } m_currentPosition += pt.m_normalWorldOnB * directionSign * pt.getDistance() * btScalar(0.2); penetration = true; } else { //printf("touching %f\n", pt.getDistance()); } } //manifold->clearManifold(); } } btTransform newTrans = m_collisionObject->getWorldTransform(); newTrans.setOrigin(m_currentPosition); m_collisionObject->setWorldTransform(newTrans); // printf("m_touchingNormal = %f,%f,%f\n",m_touchingNormal[0],m_touchingNormal[1],m_touchingNormal[2]); return penetration; } void KinematicCharacterController::stepUp (const btCollisionWorld* world) { // phase 1: up btTransform start, end; m_targetPosition = m_currentPosition + btVector3 (btScalar(0.0), m_stepHeight, btScalar(0.0)); start.setIdentity (); end.setIdentity (); /* FIXME: Handle penetration properly */ start.setOrigin (m_currentPosition + btVector3(btScalar(0.0), btScalar(0.1), btScalar(0.0))); end.setOrigin (m_targetPosition); ClosestNotMeConvexResultCallback callback (m_collisionObject); world->convexSweepTest (m_shape, start, end, callback); if (callback.HasHit()) { // we moved up only a fraction of the step height m_currentStepOffset = m_stepHeight * callback.m_closestHitFraction; m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction); } else { m_currentStepOffset = m_stepHeight; m_currentPosition = m_targetPosition; } } void KinematicCharacterController::updateTargetPositionBasedOnCollision (const btVector3& hitNormal, btScalar tangentMag, btScalar normalMag) { btVector3 movementDirection = m_targetPosition - m_currentPosition; btScalar movementLength = movementDirection.length(); if (movementLength>SIMD_EPSILON) { movementDirection.normalize(); btVector3 reflectDir = computeReflectionDirection (movementDirection, hitNormal); reflectDir.normalize(); btVector3 parallelDir, perpindicularDir; parallelDir = parallelComponent (reflectDir, hitNormal); perpindicularDir = perpindicularComponent (reflectDir, hitNormal); m_targetPosition = m_currentPosition; if (0)//tangentMag != 0.0) { btVector3 parComponent = parallelDir * btScalar (tangentMag*movementLength); // printf("parComponent=%f,%f,%f\n",parComponent[0],parComponent[1],parComponent[2]); m_targetPosition += parComponent; } if (normalMag != 0.0) { btVector3 perpComponent = perpindicularDir * btScalar (normalMag*movementLength); // printf("perpComponent=%f,%f,%f\n",perpComponent[0],perpComponent[1],perpComponent[2]); m_targetPosition += perpComponent; } } else { // printf("movementLength don't normalize a zero vector\n"); } } void KinematicCharacterController::stepForwardAndStrafe (const btCollisionWorld* collisionWorld, const btVector3& walkMove) { btVector3 originalDir = walkMove.normalized(); if (walkMove.length() < SIMD_EPSILON) { originalDir.setValue(0.f,0.f,0.f); } // printf("originalDir=%f,%f,%f\n",originalDir[0],originalDir[1],originalDir[2]); // phase 2: forward and strafe btTransform start, end; m_targetPosition = m_currentPosition + walkMove; start.setIdentity (); end.setIdentity (); btScalar fraction = 1.0; btScalar distance2 = (m_currentPosition-m_targetPosition).length2(); // printf("distance2=%f\n",distance2); if (m_touchingContact) { if (originalDir.dot(m_touchingNormal) > btScalar(0.0)) updateTargetPositionBasedOnCollision (m_touchingNormal); } int maxIter = 10; while (fraction > btScalar(0.01) && maxIter-- > 0) { start.setOrigin (m_currentPosition); end.setOrigin (m_targetPosition); ClosestNotMeConvexResultCallback callback (m_collisionObject); //btScalar margin = m_shape->getMargin(); //m_shape->setMargin(margin - 0.06f); collisionWorld->convexSweepTest (m_shape, start, end, callback); //m_shape->setMargin(margin); fraction -= callback.m_closestHitFraction; if (callback.HasHit()) { // we moved only a fraction btScalar hitDistance = (callback.m_hitPointWorld - m_currentPosition).length(); if (hitDistance<0.f) { // printf("neg dist?\n"); } /* If the distance is farther than the collision margin, move */ if (hitDistance > 0.05) { // printf("callback.m_closestHitFraction=%f\n",callback.m_closestHitFraction); m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction); } updateTargetPositionBasedOnCollision (callback.m_hitNormalWorld); btVector3 currentDir = m_targetPosition - m_currentPosition; distance2 = currentDir.length2(); if (distance2 > SIMD_EPSILON) { currentDir.normalize(); /* See Quake2: "If velocity is against original velocity, stop ead to avoid tiny oscilations in sloping corners." */ if (currentDir.dot(originalDir) <= btScalar(0.0)) { break; } } else { // printf("currentDir: don't normalize a zero vector\n"); break; } } else { // we moved whole way m_currentPosition = m_targetPosition; } // if (callback.m_closestHitFraction == 0.f) // break; } } void KinematicCharacterController::stepDown (const btCollisionWorld* collisionWorld, btScalar dt) { btTransform start, end; // phase 3: down btVector3 step_drop = btVector3(btScalar(0.0), m_currentStepOffset, btScalar(0.0)); btVector3 gravity_drop = btVector3(btScalar(0.0), m_stepHeight, btScalar(0.0)); m_targetPosition -= (step_drop + gravity_drop); start.setIdentity (); end.setIdentity (); start.setOrigin (m_currentPosition); end.setOrigin (m_targetPosition); ClosestNotMeConvexResultCallback callback (m_collisionObject); collisionWorld->convexSweepTest (m_shape, start, end, callback); if (callback.HasHit()) { // we dropped a fraction of the height -> hit floor m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction); } else { // we dropped the full height m_currentPosition = m_targetPosition; } } void KinematicCharacterController::reset () { } void KinematicCharacterController::warp (const btVector3& origin) { btTransform xform; xform.setIdentity(); xform.setOrigin (origin); m_collisionObject->setWorldTransform (xform); } void KinematicCharacterController::registerPairCacheAndDispatcher (btOverlappingPairCache* pairCache, btCollisionDispatcher* dispatcher) { m_pairCache = pairCache; m_dispatcher = dispatcher; } void KinematicCharacterController::preStep (const btCollisionWorld* collisionWorld) { int numPenetrationLoops = 0; m_touchingContact = false; while (recoverFromPenetration (collisionWorld)) { numPenetrationLoops++; m_touchingContact = true; if (numPenetrationLoops > 4) { // printf("character could not recover from penetration = %d\n", numPenetrationLoops); break; } } btTransform xform; xform = m_collisionObject->getWorldTransform (); btVector3 forwardDir = xform.getBasis()[2]; // printf("forwardDir=%f,%f,%f\n",forwardDir[0],forwardDir[1],forwardDir[2]); btVector3 upDir = xform.getBasis()[1]; btVector3 strafeDir = xform.getBasis()[0]; forwardDir.normalize (); upDir.normalize (); strafeDir.normalize (); m_upDirection = upDir; m_forwardDirection = forwardDir; m_strafeDirection = strafeDir; m_currentPosition = xform.getOrigin(); m_targetPosition = m_currentPosition; // printf("m_targetPosition=%f,%f,%f\n",m_targetPosition[0],m_targetPosition[1],m_targetPosition[2]); } void KinematicCharacterController::playerStep (const btCollisionWorld* collisionWorld, btScalar dt, int forward, int backward, int left, int right, int jump) { btVector3 walkDirection = btVector3(0.0, 0.0, 0.0); btScalar walkSpeed = m_walkVelocity * dt; if (left) walkDirection += m_strafeDirection; if (right) walkDirection -= m_strafeDirection; if (forward) walkDirection += m_forwardDirection; if (backward) walkDirection -= m_forwardDirection; btTransform xform; xform = m_collisionObject->getWorldTransform (); // printf("walkDirection(%f,%f,%f)\n",walkDirection[0],walkDirection[1],walkDirection[2]); // printf("walkSpeed=%f\n",walkSpeed); stepUp (collisionWorld); stepForwardAndStrafe (collisionWorld, walkDirection * walkSpeed); stepDown (collisionWorld, dt); xform.setOrigin (m_currentPosition); m_collisionObject->setWorldTransform (xform); } void KinematicCharacterController::setFallSpeed (btScalar fallSpeed) { m_fallSpeed = fallSpeed; } void KinematicCharacterController::setJumpSpeed (btScalar jumpSpeed) { m_jumpSpeed = jumpSpeed; } void KinematicCharacterController::setMaxJumpHeight (btScalar maxJumpHeight) { m_maxJumpHeight = maxJumpHeight; } bool KinematicCharacterController::canJump () const { return onGround(); } void KinematicCharacterController::jump () { if (!canJump()) return; #if 0 currently no jumping. btTransform xform; m_rigidBody->getMotionState()->getWorldTransform (xform); btVector3 up = xform.getBasis()[1]; up.normalize (); btScalar magnitude = (btScalar(1.0)/m_rigidBody->getInvMass()) * btScalar(8.0); m_rigidBody->applyCentralImpulse (up * magnitude); #endif } bool KinematicCharacterController::onGround () const { return true; }