import numpy as np def qrot(q, v): """ Rotate vector(s) v about the rotation described by quaternion(s) q. Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v, where * denotes any number of dimensions. Returns a tensor of shape (*, 3). """ assert q.shape[-1] == 4 assert v.shape[-1] == 3 assert q.shape[:-1] == v.shape[:-1] qvec = q[..., 1:] uv = np.cross(qvec, v) uuv = np.cross(qvec, uv) return (v + 2 * (q[..., :1] * uv + uuv)) def qinverse(q, inplace=False): # We assume the quaternion to be normalized if inplace: q[..., 1:] *= -1 return q else: w = q[..., :1] xyz = q[..., 1:] return np.hstack((w, -xyz))