#include "Wavefront2GLInstanceGraphicsShape.h" #include "../../OpenGLWindow/GLInstancingRenderer.h" #include "../../OpenGLWindow/GLInstanceGraphicsShape.h" //#include "btBulletDynamicsCommon.h" #include "LinearMath/btVector3.h" #include "../../OpenGLWindow/SimpleOpenGL3App.h" #include "Wavefront2GLInstanceGraphicsShape.h" #include "../../OpenGLWindow/GLInstancingRenderer.h" #include "../../OpenGLWindow/GLInstanceGraphicsShape.h" GLInstanceGraphicsShape* btgCreateGraphicsShapeFromWavefrontObj(std::vector& shapes, bool flatShading) { b3AlignedObjectArray* vertices = new b3AlignedObjectArray; { // int numVertices = obj->vertexCount; // int numIndices = 0; b3AlignedObjectArray* indicesPtr = new b3AlignedObjectArray; for (int s = 0; s < (int)shapes.size(); s++) { tinyobj::shape_t& shape = shapes[s]; int faceCount = shape.mesh.indices.size(); for (int f = 0; f < faceCount; f += 3) { //btVector3 normal(face.m_plane[0],face.m_plane[1],face.m_plane[2]); if (1) { btVector3 normal(0, 1, 0); int vtxBaseIndex = vertices->size(); if (f < 0 && f >= int(shape.mesh.indices.size())) { continue; } GLInstanceVertex vtx0; vtx0.xyzw[0] = shape.mesh.positions[shape.mesh.indices[f] * 3 + 0]; vtx0.xyzw[1] = shape.mesh.positions[shape.mesh.indices[f] * 3 + 1]; vtx0.xyzw[2] = shape.mesh.positions[shape.mesh.indices[f] * 3 + 2]; vtx0.xyzw[3] = 0.f; if (shape.mesh.texcoords.size()) { int uv0Index = shape.mesh.indices[f] * 2 + 0; int uv1Index = shape.mesh.indices[f] * 2 + 1; if (uv0Index >= 0 && uv1Index >= 0 && (uv0Index < int(shape.mesh.texcoords.size()) && (uv1Index < shape.mesh.texcoords.size()))) { vtx0.uv[0] = shape.mesh.texcoords[uv0Index]; vtx0.uv[1] = shape.mesh.texcoords[uv1Index]; } else { // b3Warning("obj texture coordinate out-of-range!"); vtx0.uv[0] = 0; vtx0.uv[1] = 0; } } else { vtx0.uv[0] = 0.5; vtx0.uv[1] = 0.5; } GLInstanceVertex vtx1; vtx1.xyzw[0] = shape.mesh.positions[shape.mesh.indices[f + 1] * 3 + 0]; vtx1.xyzw[1] = shape.mesh.positions[shape.mesh.indices[f + 1] * 3 + 1]; vtx1.xyzw[2] = shape.mesh.positions[shape.mesh.indices[f + 1] * 3 + 2]; vtx1.xyzw[3] = 0.f; if (shape.mesh.texcoords.size()) { int uv0Index = shape.mesh.indices[f + 1] * 2 + 0; int uv1Index = shape.mesh.indices[f + 1] * 2 + 1; if (uv0Index >= 0 && uv1Index >= 0 && (uv0Index < shape.mesh.texcoords.size()) && (uv1Index < shape.mesh.texcoords.size())) { vtx1.uv[0] = shape.mesh.texcoords[uv0Index]; vtx1.uv[1] = shape.mesh.texcoords[uv1Index]; } else { // b3Warning("obj texture coordinate out-of-range!"); vtx1.uv[0] = 0; vtx1.uv[1] = 0; } } else { vtx1.uv[0] = 0.5f; vtx1.uv[1] = 0.5f; } GLInstanceVertex vtx2; vtx2.xyzw[0] = shape.mesh.positions[shape.mesh.indices[f + 2] * 3 + 0]; vtx2.xyzw[1] = shape.mesh.positions[shape.mesh.indices[f + 2] * 3 + 1]; vtx2.xyzw[2] = shape.mesh.positions[shape.mesh.indices[f + 2] * 3 + 2]; vtx2.xyzw[3] = 0.f; if (shape.mesh.texcoords.size()) { int uv0Index = shape.mesh.indices[f + 2] * 2 + 0; int uv1Index = shape.mesh.indices[f + 2] * 2 + 1; if (uv0Index >= 0 && uv1Index >= 0 && (uv0Index < shape.mesh.texcoords.size()) && (uv1Index < shape.mesh.texcoords.size())) { vtx2.uv[0] = shape.mesh.texcoords[uv0Index]; vtx2.uv[1] = shape.mesh.texcoords[uv1Index]; } else { b3Warning("obj texture coordinate out-of-range!"); vtx2.uv[0] = 0; vtx2.uv[1] = 0; } } else { vtx2.uv[0] = 0.5; vtx2.uv[1] = 0.5; } btVector3 v0(vtx0.xyzw[0], vtx0.xyzw[1], vtx0.xyzw[2]); btVector3 v1(vtx1.xyzw[0], vtx1.xyzw[1], vtx1.xyzw[2]); btVector3 v2(vtx2.xyzw[0], vtx2.xyzw[1], vtx2.xyzw[2]); unsigned int maxIndex = 0; maxIndex = b3Max(maxIndex, shape.mesh.indices[f] * 3 + 0); maxIndex = b3Max(maxIndex, shape.mesh.indices[f] * 3 + 1); maxIndex = b3Max(maxIndex, shape.mesh.indices[f] * 3 + 2); maxIndex = b3Max(maxIndex, shape.mesh.indices[f + 1] * 3 + 0); maxIndex = b3Max(maxIndex, shape.mesh.indices[f + 1] * 3 + 1); maxIndex = b3Max(maxIndex, shape.mesh.indices[f + 1] * 3 + 2); maxIndex = b3Max(maxIndex, shape.mesh.indices[f + 2] * 3 + 0); maxIndex = b3Max(maxIndex, shape.mesh.indices[f + 2] * 3 + 1); maxIndex = b3Max(maxIndex, shape.mesh.indices[f + 2] * 3 + 2); bool hasNormals = (shape.mesh.normals.size() && maxIndex < shape.mesh.normals.size()); if (flatShading || !hasNormals) { normal = (v1 - v0).cross(v2 - v0); btScalar len2 = normal.length2(); //skip degenerate triangles if (len2 > SIMD_EPSILON) { normal.normalize(); } else { normal.setValue(0, 0, 0); } vtx0.normal[0] = normal[0]; vtx0.normal[1] = normal[1]; vtx0.normal[2] = normal[2]; vtx1.normal[0] = normal[0]; vtx1.normal[1] = normal[1]; vtx1.normal[2] = normal[2]; vtx2.normal[0] = normal[0]; vtx2.normal[1] = normal[1]; vtx2.normal[2] = normal[2]; } else { vtx0.normal[0] = shape.mesh.normals[shape.mesh.indices[f] * 3 + 0]; vtx0.normal[1] = shape.mesh.normals[shape.mesh.indices[f] * 3 + 1]; vtx0.normal[2] = shape.mesh.normals[shape.mesh.indices[f] * 3 + 2]; //shape.mesh.indices[f+1]*3+0 vtx1.normal[0] = shape.mesh.normals[shape.mesh.indices[f + 1] * 3 + 0]; vtx1.normal[1] = shape.mesh.normals[shape.mesh.indices[f + 1] * 3 + 1]; vtx1.normal[2] = shape.mesh.normals[shape.mesh.indices[f + 1] * 3 + 2]; vtx2.normal[0] = shape.mesh.normals[shape.mesh.indices[f + 2] * 3 + 0]; vtx2.normal[1] = shape.mesh.normals[shape.mesh.indices[f + 2] * 3 + 1]; vtx2.normal[2] = shape.mesh.normals[shape.mesh.indices[f + 2] * 3 + 2]; } vertices->push_back(vtx0); vertices->push_back(vtx1); vertices->push_back(vtx2); indicesPtr->push_back(vtxBaseIndex); indicesPtr->push_back(vtxBaseIndex + 1); indicesPtr->push_back(vtxBaseIndex + 2); } } } GLInstanceGraphicsShape* gfxShape = new GLInstanceGraphicsShape; gfxShape->m_vertices = vertices; gfxShape->m_numvertices = vertices->size(); gfxShape->m_indices = indicesPtr; gfxShape->m_numIndices = indicesPtr->size(); for (int i = 0; i < 4; i++) gfxShape->m_scaling[i] = 1; //bake the scaling into the vertices return gfxShape; } }