/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ //#define USE_KINEMATIC_GROUND 1 //#define PRINT_CONTACT_STATISTICS 1 //#define REGISTER_CUSTOM_COLLISION_ALGORITHM 1 //#define USER_DEFINED_FRICTION_MODEL 1 //following define allows to compare/replace Bullet's constraint solver with ODE quickstep //this define requires to either add the libquickstep library (win32, see msvc/8/libquickstep.vcproj) or manually add the files from Extras/quickstep //#define COMPARE_WITH_QUICKSTEP 1 #include "btBulletDynamicsCommon.h" #include "BulletCollision/CollisionDispatch/btSphereSphereCollisionAlgorithm.h" //#include "../Extras/AlternativeCollisionAlgorithms/BoxBoxCollisionAlgorithm.h" #include "BulletCollision/CollisionDispatch/btSphereTriangleCollisionAlgorithm.h" #ifdef COMPARE_WITH_QUICKSTEP #include "../Extras/quickstep/OdeConstraintSolver.h" #endif //COMPARE_WITH_QUICKSTEP #include "LinearMath/btQuickprof.h" #include "LinearMath/btIDebugDraw.h" #include "GLDebugDrawer.h" #include "BMF_Api.h" #include //printf debugging float deltaTime = 1.f/60.f; float gCollisionMargin = 0.05f; #include "CcdPhysicsDemo.h" #include "GL_ShapeDrawer.h" #include "GlutStuff.h" extern float eye[3]; extern int glutScreenWidth; extern int glutScreenHeight; const int maxProxies = 32766; const int maxOverlap = 65535; bool createConstraint = true;//false; bool useCompound = false;//true;//false; #ifdef _DEBUG const int gNumObjects = 120; #else const int gNumObjects = 120;//try this in release mode: 3000. never go above 16384, unless you increate maxNumObjects value in DemoApplication.cp #endif const int maxNumObjects = 32760; int shapeIndex[maxNumObjects]; #define CUBE_HALF_EXTENTS 1 #define EXTRA_HEIGHT -20.f //GL_LineSegmentShape shapeE(btPoint3(-50,0,0), // btPoint3(50,0,0)); static const int numShapes = 4; btCollisionShape* shapePtr[numShapes] = { ///Please don't make the box sizes larger then 1000: the collision detection will be inaccurate. ///See http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=346 #define USE_GROUND_PLANE 1 #ifdef USE_GROUND_PLANE new btStaticPlaneShape(btVector3(0,1,0),10), #else new btBoxShape (btVector3(50,10,50)), #endif new btCylinderShape (btVector3(CUBE_HALF_EXTENTS-gCollisionMargin,CUBE_HALF_EXTENTS-gCollisionMargin,CUBE_HALF_EXTENTS-gCollisionMargin)), //new btCylinderShape (btVector3(1-gCollisionMargin,CUBE_HALF_EXTENTS-gCollisionMargin,1-gCollisionMargin)), //new btBoxShape (btVector3(CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS)), //new btConeShape(CUBE_HALF_EXTENTS-gCollisionMargin,2.f*CUBE_HALF_EXTENTS-gCollisionMargin), new btSphereShape (CUBE_HALF_EXTENTS), //new btBU_Simplex1to4(btPoint3(-1,-1,-1),btPoint3(1,-1,-1),btPoint3(-1,1,-1),btPoint3(0,0,1)), //new btEmptyShape(), new btBoxShape (btVector3(0.4,1,0.8)) }; //////////////////////////////////// GLDebugDrawer debugDrawer; int main(int argc,char** argv) { CcdPhysicsDemo* ccdDemo = new CcdPhysicsDemo(); ccdDemo->initPhysics(); ccdDemo->setCameraDistance(26.f); return glutmain(argc, argv,640,480,"Bullet Physics Demo. http://bullet.sf.net",ccdDemo); } extern int gNumManifold; extern int gOverlappingPairs; extern int gTotalContactPoints; void CcdPhysicsDemo::clientMoveAndDisplay() { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); #ifdef USE_KINEMATIC_GROUND //btQuaternion kinRotation(btVector3(0,0,1),0.); btVector3 kinTranslation(-0.01,0,0); //kinematic object btCollisionObject* colObj = m_dynamicsWorld->getCollisionObjectArray()[0]; //is this a rigidbody with a motionstate? then use the motionstate to update positions! if (btRigidBody::upcast(colObj) && btRigidBody::upcast(colObj)->getMotionState()) { btTransform newTrans; btRigidBody::upcast(colObj)->getMotionState()->getWorldTransform(newTrans); newTrans.getOrigin()+=kinTranslation; btRigidBody::upcast(colObj)->getMotionState()->setWorldTransform(newTrans); } else { m_dynamicsWorld->getCollisionObjectArray()[0]->m_worldTransform.getOrigin() += kinTranslation; } #endif //USE_KINEMATIC_GROUND float dt = m_clock.getTimeMilliseconds() * 0.001f; m_clock.reset(); printf("dt = %f: ",dt); if (m_dynamicsWorld) { //during idle mode, just run 1 simulation step maximum int maxSimSubSteps = m_idle ? 1 : 1; if (m_idle) dt = 1.0/420.f; int numSimSteps = m_dynamicsWorld->stepSimulation(dt,maxSimSubSteps); if (!numSimSteps) printf("Interpolated transforms\n"); else { if (numSimSteps > maxSimSubSteps) { //detect dropping frames printf("Dropped (%i) simulation steps out of %i\n",numSimSteps - maxSimSubSteps,numSimSteps); } else { printf("Simulated (%i) steps\n",numSimSteps); } } } #ifdef USE_QUICKPROF btProfiler::beginBlock("render"); #endif //USE_QUICKPROF renderme(); #ifdef USE_QUICKPROF btProfiler::endBlock("render"); #endif glFlush(); //some additional debugging info #ifdef PRINT_CONTACT_STATISTICS printf("num manifolds: %i\n",gNumManifold); printf("num gOverlappingPairs: %i\n",gOverlappingPairs); printf("num gTotalContactPoints : %i\n",gTotalContactPoints ); #endif //PRINT_CONTACT_STATISTICS gTotalContactPoints = 0; glutSwapBuffers(); } void CcdPhysicsDemo::displayCallback(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); m_dynamicsWorld->updateAabbs(); renderme(); glFlush(); glutSwapBuffers(); } ///User-defined friction model, the most simple friction model available: no friction float myFrictionModel( btRigidBody& body1, btRigidBody& body2, btManifoldPoint& contactPoint, const btContactSolverInfo& solverInfo ) { //don't do any friction return 0.f; } void CcdPhysicsDemo::initPhysics() { btCollisionDispatcher* dispatcher = new btCollisionDispatcher(); btVector3 worldAabbMin(-10000,-10000,-10000); btVector3 worldAabbMax(10000,10000,10000); btOverlappingPairCache* broadphase = new btAxisSweep3(worldAabbMin,worldAabbMax,maxProxies); // btOverlappingPairCache* broadphase = new btSimpleBroadphase; #ifdef REGISTER_CUSTOM_COLLISION_ALGORITHM dispatcher->registerCollisionCreateFunc(SPHERE_SHAPE_PROXYTYPE,SPHERE_SHAPE_PROXYTYPE,new btSphereSphereCollisionAlgorithm::CreateFunc); dispatcher->registerCollisionCreateFunc(BOX_SHAPE_PROXYTYPE,BOX_SHAPE_PROXYTYPE,new BoxBoxCollisionAlgorithm::CreateFunc); dispatcher->registerCollisionCreateFunc(SPHERE_SHAPE_PROXYTYPE,TRIANGLE_SHAPE_PROXYTYPE,new btSphereTriangleCollisionAlgorithm::CreateFunc); #endif //REGISTER_CUSTOM_COLLISION_ALGORITHM #ifdef COMPARE_WITH_QUICKSTEP btConstraintSolver* solver = new OdeConstraintSolver(); #else //default constraint solver btSequentialImpulseConstraintSolver* solver = new btSequentialImpulseConstraintSolver; #endif m_dynamicsWorld = new btDiscreteDynamicsWorld(dispatcher,broadphase,solver); m_dynamicsWorld->setGravity(btVector3(0,-10,0)); m_dynamicsWorld->setDebugDrawer(&debugDrawer); #ifdef USER_DEFINED_FRICTION_MODEL { //solver->setContactSolverFunc(ContactSolverFunc func,USER_CONTACT_SOLVER_TYPE1,DEFAULT_CONTACT_SOLVER_TYPE); solver->SetFrictionSolverFunc(myFrictionModel,USER_CONTACT_SOLVER_TYPE1,DEFAULT_CONTACT_SOLVER_TYPE); solver->SetFrictionSolverFunc(myFrictionModel,DEFAULT_CONTACT_SOLVER_TYPE,USER_CONTACT_SOLVER_TYPE1); solver->SetFrictionSolverFunc(myFrictionModel,USER_CONTACT_SOLVER_TYPE1,USER_CONTACT_SOLVER_TYPE1); //m_physicsEnvironmentPtr->setNumIterations(2); } #endif //USER_DEFINED_FRICTION_MODEL int i; btTransform tr; tr.setIdentity(); for (i=0;i0) { shapeIndex[i] = 1;//sphere } else shapeIndex[i] = 0; } if (useCompound) { btCompoundShape* compoundShape = new btCompoundShape(); btCollisionShape* oldShape = shapePtr[1]; shapePtr[1] = compoundShape; btTransform ident; ident.setIdentity(); ident.setOrigin(btVector3(0,0,0)); compoundShape->addChildShape(ident,oldShape);// ident.setOrigin(btVector3(0,0,2)); compoundShape->addChildShape(ident,new btSphereShape(0.9));// } for (i=0;isetMargin(gCollisionMargin); bool isDyna = i>0; btTransform trans; trans.setIdentity(); if (i>0) { //stack them int colsize = 10; int row = (i*CUBE_HALF_EXTENTS*2)/(colsize*2*CUBE_HALF_EXTENTS); int row2 = row; int col = (i)%(colsize)-colsize/2; if (col>3) { col=11; row2 |=1; } btVector3 pos(col*2*CUBE_HALF_EXTENTS + (row2%2)*CUBE_HALF_EXTENTS, row*2*CUBE_HALF_EXTENTS+CUBE_HALF_EXTENTS+EXTRA_HEIGHT,0); trans.setOrigin(pos); } else { trans.setOrigin(btVector3(0,-30,0)); } float mass = 1.f; if (!isDyna) mass = 0.f; btRigidBody* body = localCreateRigidBody(mass,trans,shape); #ifdef USE_KINEMATIC_GROUND if (mass == 0.f) { body->m_collisionFlags = btCollisionObject::CF_KINEMATIC_OJBECT; body->SetActivationState(DISABLE_DEACTIVATION); } #endif //USE_KINEMATIC_GROUND // Only do CCD if motion in one timestep (1.f/60.f) exceeds CUBE_HALF_EXTENTS body->m_ccdSquareMotionTreshold = CUBE_HALF_EXTENTS; //Experimental: better estimation of CCD Time of Impact: body->m_ccdSweptSphereRadius = 0.2*CUBE_HALF_EXTENTS; #ifdef USER_DEFINED_FRICTION_MODEL ///Advanced use: override the friction solver body->m_frictionSolverType = USER_CONTACT_SOLVER_TYPE1; #endif //USER_DEFINED_FRICTION_MODEL } clientResetScene(); }