#include "ImportURDFSetup.h" #include "BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h" #include "Bullet3Common/b3FileUtils.h" #include "../ImportSTLDemo/LoadMeshFromSTL.h" #include "../ImportColladaDemo/LoadMeshFromCollada.h" #include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h" #include "Bullet3Common/b3FileUtils.h" static int bodyCollisionFilterGroup=btBroadphaseProxy::CharacterFilter; static int bodyCollisionFilterMask=btBroadphaseProxy::AllFilter&(~btBroadphaseProxy::CharacterFilter); static bool enableConstraints = true;//false; ImportUrdfSetup::ImportUrdfSetup() { sprintf(m_fileName,"r2d2.urdf"); } ImportUrdfSetup::~ImportUrdfSetup() { } static btVector4 colors[4] = { btVector4(1,0,0,1), btVector4(0,1,0,1), btVector4(0,1,1,1), btVector4(1,1,0,1), }; btVector3 selectColor() { static int curColor = 0; btVector4 color = colors[curColor]; curColor++; curColor&=3; return color; } void ImportUrdfSetup::setFileName(const char* urdfFileName) { memcpy(m_fileName,urdfFileName,strlen(urdfFileName)+1); } #include "urdf/urdfdom/urdf_parser/include/urdf_parser/urdf_parser.h" #include "urdf_samples.h" //#include "BulletCollision/CollisionShapes/btCylinderShape.h" //#define USE_BARREL_VERTICES //#include "OpenGLWindow/ShapeData.h" #include #include using namespace urdf; void printTree(my_shared_ptr link,int level = 0) { level+=2; int count = 0; for (std::vector >::const_iterator child = link->child_links.begin(); child != link->child_links.end(); child++) { if (*child) { for(int j=0;jname << std::endl; // first grandchild printTree(*child,level); } else { for(int j=0;jname << " has a null child!" << *child << std::endl; } } } struct URDF_LinkInformation { const Link* m_thisLink; int m_linkIndex; //int m_parentIndex; btTransform m_localInertialFrame; //btTransform m_localVisualFrame; btTransform m_bodyWorldTransform; btVector3 m_localInertiaDiagonal; btScalar m_mass; btCollisionShape* m_collisionShape; btRigidBody* m_bulletRigidBody; URDF_LinkInformation() :m_thisLink(0), m_linkIndex(-2), //m_parentIndex(-2), m_collisionShape(0), m_bulletRigidBody(0) { } virtual ~URDF_LinkInformation() { printf("~\n"); } }; struct URDF_JointInformation { }; struct URDF2BulletMappings { btHashMap m_link2rigidbody; //btHashMap m_joint2Constraint; //btAlignedObjectArray m_linkLocalInertiaTransforms;//Body transform is in center of mass, aligned with Principal Moment Of Inertia; btAlignedObjectArray m_linkMasses; //btAlignedObjectArray m_linkLocalDiagonalInertiaTensors; //btAlignedObjectArray m_parentIndices;//for root, it is identity //btAlignedObjectArray m_jointAxisArray; //btAlignedObjectArray m_jointOffsetInParent; //btAlignedObjectArray m_jointOffsetInChild; //btAlignedObjectArray m_jointTypeArray; bool m_createMultiBody; int m_totalNumJoints; btMultiBody* m_bulletMultiBody; URDF2BulletMappings() :m_createMultiBody(false), m_totalNumJoints(0), m_bulletMultiBody(0) { } }; enum MyFileType { FILE_STL=1, FILE_COLLADA=2 }; template btCollisionShape* convertURDFToCollisionShape(const T* visual, const char* pathPrefix) { btCollisionShape* shape = 0; switch (visual->geometry->type) { case Geometry::CYLINDER: { printf("processing a cylinder\n"); urdf::Cylinder* cyl = (urdf::Cylinder*)visual->geometry.get(); btAlignedObjectArray vertices; //int numVerts = sizeof(barrel_vertices)/(9*sizeof(float)); int numSteps = 32; for (int i=0;iradius*btSin(SIMD_2_PI*(float(i)/numSteps)),cyl->radius*btCos(SIMD_2_PI*(float(i)/numSteps)),cyl->length/2.); vertices.push_back(vert); vert[2] = -cyl->length/2.; vertices.push_back(vert); } btConvexHullShape* cylZShape = new btConvexHullShape(&vertices[0].x(), vertices.size(), sizeof(btVector3)); cylZShape->initializePolyhedralFeatures(); //btConvexShape* cylZShape = new btConeShapeZ(cyl->radius,cyl->length);//(vexHullShape(&vertices[0].x(), vertices.size(), sizeof(btVector3)); //btVector3 halfExtents(cyl->radius,cyl->radius,cyl->length/2.); //btCylinderShapeZ* cylZShape = new btCylinderShapeZ(halfExtents); cylZShape->setMargin(0.001); shape = cylZShape; break; } case Geometry::BOX: { printf("processing a box\n"); urdf::Box* box = (urdf::Box*)visual->geometry.get(); btVector3 extents(box->dim.x,box->dim.y,box->dim.z); btBoxShape* boxShape = new btBoxShape(extents*0.5f); //btConvexShape* boxShape = new btConeShapeX(extents[2]*0.5,extents[0]*0.5); shape = boxShape; shape ->setMargin(0.001); break; } case Geometry::SPHERE: { printf("processing a sphere\n"); urdf::Sphere* sphere = (urdf::Sphere*)visual->geometry.get(); btScalar radius = sphere->radius; btSphereShape* sphereShape = new btSphereShape(radius); shape = sphereShape; shape ->setMargin(0.001); break; break; } case Geometry::MESH: { if (visual->name.length()) { printf("visual->name=%s\n",visual->name.c_str()); } if (visual->geometry) { const urdf::Mesh* mesh = (const urdf::Mesh*) visual->geometry.get(); if (mesh->filename.length()) { const char* filename = mesh->filename.c_str(); printf("mesh->filename=%s\n",filename); char fullPath[1024]; int fileType = 0; sprintf(fullPath,"%s%s",pathPrefix,filename); b3FileUtils::toLower(fullPath); if (strstr(fullPath,".dae")) { fileType = FILE_COLLADA; } if (strstr(fullPath,".stl")) { fileType = FILE_STL; } sprintf(fullPath,"%s%s",pathPrefix,filename); FILE* f = fopen(fullPath,"rb"); if (f) { fclose(f); GLInstanceGraphicsShape* glmesh = 0; switch (fileType) { case FILE_STL: { glmesh = LoadMeshFromSTL(fullPath); break; } case FILE_COLLADA: { btAlignedObjectArray visualShapes; btAlignedObjectArray visualShapeInstances; btTransform upAxisTrans;upAxisTrans.setIdentity(); float unitMeterScaling=1; LoadMeshFromCollada(fullPath, visualShapes, visualShapeInstances, upAxisTrans, unitMeterScaling); glmesh = new GLInstanceGraphicsShape; int index = 0; glmesh->m_indices = new b3AlignedObjectArray(); glmesh->m_vertices = new b3AlignedObjectArray(); for (int i=0;im_shapeIndex]; b3AlignedObjectArray verts; verts.resize(gfxShape->m_vertices->size()); int baseIndex = glmesh->m_vertices->size(); for (int i=0;im_vertices->size();i++) { verts[i].normal[0] = gfxShape->m_vertices->at(i).normal[0]; verts[i].normal[1] = gfxShape->m_vertices->at(i).normal[1]; verts[i].normal[2] = gfxShape->m_vertices->at(i).normal[2]; verts[i].uv[0] = gfxShape->m_vertices->at(i).uv[0]; verts[i].uv[1] = gfxShape->m_vertices->at(i).uv[1]; verts[i].xyzw[0] = gfxShape->m_vertices->at(i).xyzw[0]; verts[i].xyzw[1] = gfxShape->m_vertices->at(i).xyzw[1]; verts[i].xyzw[2] = gfxShape->m_vertices->at(i).xyzw[2]; verts[i].xyzw[3] = gfxShape->m_vertices->at(i).xyzw[3]; } int curNumIndices = glmesh->m_indices->size(); int additionalIndices = gfxShape->m_indices->size(); glmesh->m_indices->resize(curNumIndices+additionalIndices); for (int k=0;km_indices->at(curNumIndices+k)=gfxShape->m_indices->at(k)+baseIndex; } //compensate upAxisTrans and unitMeterScaling here btMatrix4x4 upAxisMat; upAxisMat.setPureRotation(upAxisTrans.getRotation()); btMatrix4x4 unitMeterScalingMat; unitMeterScalingMat.setPureScaling(btVector3(unitMeterScaling,unitMeterScaling,unitMeterScaling)); btMatrix4x4 worldMat = unitMeterScalingMat*upAxisMat*instance->m_worldTransform; //btMatrix4x4 worldMat = instance->m_worldTransform; int curNumVertices = glmesh->m_vertices->size(); int additionalVertices = verts.size(); glmesh->m_vertices->reserve(curNumVertices+additionalVertices); for(int v=0;vm_vertices->push_back(verts[v]); } } glmesh->m_numIndices = glmesh->m_indices->size(); glmesh->m_numvertices = glmesh->m_vertices->size(); //glmesh = LoadMeshFromCollada(fullPath); break; } default: { } } if (glmesh && (glmesh->m_numvertices>0)) { printf("extracted %d verticed from STL file %s\n", glmesh->m_numvertices,fullPath); //int shapeId = m_glApp->m_instancingRenderer->registerShape(&gvertices[0].pos[0],gvertices.size(),&indices[0],indices.size()); //convex->setUserIndex(shapeId); btAlignedObjectArray convertedVerts; convertedVerts.reserve(glmesh->m_numvertices); for (int i=0;im_numvertices;i++) { convertedVerts.push_back(btVector3(glmesh->m_vertices->at(i).xyzw[0],glmesh->m_vertices->at(i).xyzw[1],glmesh->m_vertices->at(i).xyzw[2])); } //btConvexHullShape* cylZShape = new btConvexHullShape(&glmesh->m_vertices->at(0).xyzw[0], glmesh->m_numvertices, sizeof(GLInstanceVertex)); btConvexHullShape* cylZShape = new btConvexHullShape(&convertedVerts[0].getX(), convertedVerts.size(), sizeof(btVector3)); //cylZShape->initializePolyhedralFeatures(); //btVector3 halfExtents(cyl->radius,cyl->radius,cyl->length/2.); //btCylinderShapeZ* cylZShape = new btCylinderShapeZ(halfExtents); cylZShape->setMargin(0.001); shape = cylZShape; } else { printf("issue extracting mesh from STL file %s\n", fullPath); } } else { printf("mesh geometry not found %s\n",fullPath); } } } break; } default: { printf("Error: unknown visual geometry type\n"); } } return shape; } void URDFvisual2BulletCollisionShape(my_shared_ptr link, GraphicsPhysicsBridge& gfxBridge, const btTransform& parentTransformInWorldSpace, btMultiBodyDynamicsWorld* world1, URDF2BulletMappings& mappings, const char* pathPrefix) { //btCollisionShape* shape = 0; btTransform linkTransformInWorldSpace; linkTransformInWorldSpace.setIdentity(); btScalar mass = 0; btTransform inertialFrame; inertialFrame.setIdentity(); const Link* parentLink = (*link).getParent(); URDF_LinkInformation* pp = 0; int linkIndex = mappings.m_linkMasses.size(); btVector3 localInertiaDiagonal(0,0,0); int parentIndex = -1; if (parentLink) { parentIndex = parentLink->m_link_index; btAssert(parentIndex>=0); } { URDF_LinkInformation** ppRigidBody = mappings.m_link2rigidbody.find(parentLink); if (ppRigidBody) { pp = (*ppRigidBody); btTransform tr = pp->m_bodyWorldTransform; printf("rigidbody origin (COM) of link(%s) parent(%s): %f,%f,%f\n",(*link).name.c_str(), parentLink->name.c_str(), tr.getOrigin().x(), tr.getOrigin().y(), tr.getOrigin().z()); } } (*link).m_link_index = linkIndex; if ((*link).inertial) { mass = (*link).inertial->mass; localInertiaDiagonal.setValue((*link).inertial->ixx,(*link).inertial->iyy,(*link).inertial->izz); inertialFrame.setOrigin(btVector3((*link).inertial->origin.position.x,(*link).inertial->origin.position.y,(*link).inertial->origin.position.z)); inertialFrame.setRotation(btQuaternion((*link).inertial->origin.rotation.x,(*link).inertial->origin.rotation.y,(*link).inertial->origin.rotation.z,(*link).inertial->origin.rotation.w)); } btTransform parent2joint; parent2joint.setIdentity(); if ((*link).parent_joint) { const urdf::Vector3 pos = (*link).parent_joint->parent_to_joint_origin_transform.position; const urdf::Rotation orn = (*link).parent_joint->parent_to_joint_origin_transform.rotation; parent2joint.setOrigin(btVector3(pos.x,pos.y,pos.z)); parent2joint.setRotation(btQuaternion(orn.x,orn.y,orn.z,orn.w)); linkTransformInWorldSpace =parentTransformInWorldSpace*parent2joint; } else { linkTransformInWorldSpace = parentTransformInWorldSpace; } { printf("converting visuals of link %s",link->name.c_str()); { btCompoundShape* tmpGfxShape = new btCompoundShape(); for (int v=0;v<(int)link->visual_array.size();v++) { const Visual* vis = link->visual_array[v].get(); btCollisionShape* childShape = convertURDFToCollisionShape(vis,pathPrefix); if (childShape) { btVector3 childPos(vis->origin.position.x, vis->origin.position.y, vis->origin.position.z); btQuaternion childOrn(vis->origin.rotation.x, vis->origin.rotation.y, vis->origin.rotation.z, vis->origin.rotation.w); btTransform childTrans; childTrans.setOrigin(childPos); childTrans.setRotation(childOrn); if (!mappings.m_createMultiBody) { tmpGfxShape->addChildShape(childTrans*inertialFrame.inverse(),childShape); } else { tmpGfxShape->addChildShape(childTrans,childShape); } } } btCompoundShape* compoundShape = new btCompoundShape(); for (int v=0;v<(int)link->collision_array.size();v++) { const Collision* col = link->collision_array[v].get(); btCollisionShape* childShape = convertURDFToCollisionShape(col ,pathPrefix); if (childShape) { btVector3 childPos(col->origin.position.x, col->origin.position.y, col->origin.position.z); btQuaternion childOrn(col->origin.rotation.x, col->origin.rotation.y, col->origin.rotation.z, col->origin.rotation.w); btTransform childTrans; childTrans.setOrigin(childPos); childTrans.setRotation(childOrn); if (!mappings.m_createMultiBody) { compoundShape->addChildShape(childTrans*inertialFrame.inverse(),childShape); } else { compoundShape->addChildShape(childTrans,childShape); } } } if (compoundShape) { btVector3 color = selectColor(); /* if (visual->material.get()) { color.setValue(visual->material->color.r,visual->material->color.g,visual->material->color.b);//,visual->material->color.a); } */ //btVector3 localInertiaDiagonal(0, 0, 0); //if (mass) //{ // shape->calculateLocalInertia(mass, localInertiaDiagonal); //} //btTransform visualFrameInWorldSpace = linkTransformInWorldSpace*visual_frame; btTransform inertialFrameInWorldSpace = linkTransformInWorldSpace*inertialFrame; URDF_LinkInformation* linkInfo = new URDF_LinkInformation; if (!mappings.m_createMultiBody) { btRigidBody::btRigidBodyConstructionInfo rbci(mass, 0, compoundShape, localInertiaDiagonal); rbci.m_startWorldTransform = inertialFrameInWorldSpace; linkInfo->m_bodyWorldTransform = inertialFrameInWorldSpace;//visualFrameInWorldSpace //rbci.m_startWorldTransform = inertialFrameInWorldSpace;//linkCenterOfMass; btRigidBody* body = new btRigidBody(rbci); world1->addRigidBody(body, bodyCollisionFilterGroup, bodyCollisionFilterMask); gfxBridge.createCollisionShapeGraphicsObject(tmpGfxShape); //hack-> transfer user inder from visual to collision shape compoundShape->setUserIndex(tmpGfxShape->getUserIndex()); gfxBridge.createRigidBodyGraphicsObject(body, color); linkInfo->m_bulletRigidBody = body; } else { if (mappings.m_bulletMultiBody==0) { bool multiDof = true; bool canSleep = false; bool isFixedBase = (mass==0);//todo: figure out when base is fixed int totalNumJoints = mappings.m_totalNumJoints; mappings.m_bulletMultiBody = new btMultiBody(totalNumJoints,mass, localInertiaDiagonal, isFixedBase, canSleep, multiDof); } } linkInfo->m_collisionShape = compoundShape; linkInfo->m_localInertiaDiagonal = localInertiaDiagonal; linkInfo->m_mass = mass; //linkInfo->m_localVisualFrame =visual_frame; linkInfo->m_localInertialFrame =inertialFrame; linkInfo->m_thisLink = link.get(); const Link* p = link.get(); mappings.m_link2rigidbody.insert(p, linkInfo); //create a joint if necessary if ((*link).parent_joint && pp) { btAssert(pp); const Joint* pj = (*link).parent_joint.get(); btTransform offsetInA,offsetInB; static bool once = true; offsetInA.setIdentity(); static bool toggle=false; //offsetInA = pp->m_localVisualFrame.inverse()*parent2joint; offsetInA = pp->m_localInertialFrame.inverse()*parent2joint; offsetInB.setIdentity(); //offsetInB = visual_frame.inverse(); offsetInB = inertialFrame.inverse(); bool disableParentCollision = true; btVector3 jointAxis(pj->axis.x,pj->axis.y,pj->axis.z); switch (pj->type) { case Joint::FIXED: { if (mappings.m_createMultiBody) { //todo: adjust the center of mass transform and pivot axis properly printf("Fixed joint (btMultiBody)\n"); //btVector3 dVec = quatRotate(parentComToThisCom.getRotation(),offsetInB.inverse().getOrigin()); btQuaternion rot = parent2joint.inverse().getRotation(); //toggle=!toggle; mappings.m_bulletMultiBody->setupFixed(linkIndex - 1, mass, localInertiaDiagonal, parentIndex - 1, rot, parent2joint.getOrigin(), btVector3(0,0,0),disableParentCollision); btMatrix3x3 rm(rot); btScalar y,p,r; rm.getEulerZYX(y,p,r); //parent2joint.inverse().getRotation(), offsetInA.getOrigin(), -offsetInB.getOrigin(), disableParentCollision); //linkInfo->m_localVisualFrame.setIdentity(); printf("y=%f,p=%f,r=%f\n", y,p,r); } else { printf("Fixed joint\n"); btMatrix3x3 rm(offsetInA.getBasis()); btScalar y,p,r; rm.getEulerZYX(y,p,r); //parent2joint.inverse().getRotation(), offsetInA.getOrigin(), -offsetInB.getOrigin(), disableParentCollision); //linkInfo->m_localVisualFrame.setIdentity(); printf("y=%f,p=%f,r=%f\n", y,p,r); btGeneric6DofSpring2Constraint* dof6 = new btGeneric6DofSpring2Constraint(*pp->m_bulletRigidBody, *linkInfo->m_bulletRigidBody, offsetInA, offsetInB); // btVector3 bulletAxis(pj->axis.x,pj->axis.y,pj->axis.z); dof6->setLinearLowerLimit(btVector3(0,0,0)); dof6->setLinearUpperLimit(btVector3(0,0,0)); dof6->setAngularLowerLimit(btVector3(0,0,0)); dof6->setAngularUpperLimit(btVector3(0,0,0)); if (enableConstraints) world1->addConstraint(dof6,true); // btFixedConstraint* fixed = new btFixedConstraint(*parentBody, *body,offsetInA,offsetInB); // world->addConstraint(fixed,true); } break; } case Joint::CONTINUOUS: case Joint::REVOLUTE: { if (mappings.m_createMultiBody) { //todo: adjust the center of mass transform and pivot axis properly mappings.m_bulletMultiBody->setupRevolute(linkIndex - 1, mass, localInertiaDiagonal, parentIndex - 1, parent2joint.inverse().getRotation(), jointAxis, parent2joint.getOrigin(), btVector3(0,0,0),//offsetInB.getOrigin(), disableParentCollision); /* mappings.m_bulletMultiBody->setupRevolute(linkIndex - 1, mass, localInertiaDiagonal, parentIndex - 1, parent2joint.inverse().getRotation(), jointAxis, offsetInA.getOrigin(),//parent2joint.getOrigin(), -offsetInB.getOrigin(), disableParentCollision); linkInfo->m_localVisualFrame.setIdentity(); */ } else { //only handle principle axis at the moment, //@todo(erwincoumans) orient the constraint for non-principal axis btVector3 axis(pj->axis.x,pj->axis.y,pj->axis.z); int principleAxis = axis.closestAxis(); switch (principleAxis) { case 0: { btGeneric6DofSpring2Constraint* dof6 = new btGeneric6DofSpring2Constraint(*pp->m_bulletRigidBody, *linkInfo->m_bulletRigidBody, offsetInA, offsetInB,RO_ZYX); dof6->setLinearLowerLimit(btVector3(0,0,0)); dof6->setLinearUpperLimit(btVector3(0,0,0)); dof6->setAngularUpperLimit(btVector3(-1,0,0)); dof6->setAngularLowerLimit(btVector3(1,0,0)); if (enableConstraints) world1->addConstraint(dof6,true); break; } case 1: { btGeneric6DofSpring2Constraint* dof6 = new btGeneric6DofSpring2Constraint(*pp->m_bulletRigidBody, *linkInfo->m_bulletRigidBody, offsetInA, offsetInB,RO_XZY); dof6->setLinearLowerLimit(btVector3(0,0,0)); dof6->setLinearUpperLimit(btVector3(0,0,0)); dof6->setAngularUpperLimit(btVector3(0,-1,0)); dof6->setAngularLowerLimit(btVector3(0,1,0)); if (enableConstraints) world1->addConstraint(dof6,true); break; } case 2: default: { btGeneric6DofSpring2Constraint* dof6 = new btGeneric6DofSpring2Constraint(*pp->m_bulletRigidBody, *linkInfo->m_bulletRigidBody, offsetInA, offsetInB,RO_XYZ); dof6->setLinearLowerLimit(btVector3(0,0,0)); dof6->setLinearUpperLimit(btVector3(0,0,0)); dof6->setAngularUpperLimit(btVector3(0,0,-1)); dof6->setAngularLowerLimit(btVector3(0,0,0)); if (enableConstraints) world1->addConstraint(dof6,true); } }; printf("Revolute/Continuous joint\n"); } break; } case Joint::PRISMATIC: { if (mappings.m_createMultiBody) { mappings.m_bulletMultiBody->setupPrismatic(linkIndex - 1, mass, localInertiaDiagonal, parentIndex - 1, parent2joint.inverse().getRotation(),jointAxis,parent2joint.getOrigin(),disableParentCollision); //mappings.m_bulletMultiBody->setupRevolute(linkIndex - 1, mass, localInertiaDiagonal, parentIndex - 1, // parent2joint.getRotation(), jointAxis, parent2joint.getOrigin(), // offsetInB.getOrigin(), // disableParentCollision); } else { btGeneric6DofSpring2Constraint* dof6 = new btGeneric6DofSpring2Constraint(*pp->m_bulletRigidBody, *linkInfo->m_bulletRigidBody, offsetInA, offsetInB); dof6->setLinearLowerLimit(btVector3(pj->limits->lower,0,0)); dof6->setLinearUpperLimit(btVector3(pj->limits->upper,0,0)); dof6->setAngularLowerLimit(btVector3(0,0,0)); dof6->setAngularUpperLimit(btVector3(0,0,0)); if (enableConstraints) world1->addConstraint(dof6,true); printf("Prismatic\n"); } break; } default: { printf("Error: unsupported joint type in URDF (%d)\n", pj->type); } } } if (mappings.m_createMultiBody) { if (compoundShape->getNumChildShapes()>0) { btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(mappings.m_bulletMultiBody, linkIndex-1); //btCompoundShape* comp = new btCompoundShape(); //comp->addChildShape(linkInfo->m_localVisualFrame,shape); gfxBridge.createCollisionShapeGraphicsObject(tmpGfxShape); compoundShape->setUserIndex(tmpGfxShape->getUserIndex()); col->setCollisionShape(compoundShape); btTransform tr; tr.setIdentity(); tr = linkTransformInWorldSpace; //if we don't set the initial pose of the btCollisionObject, the simulator will do this //when syncing the btMultiBody link transforms to the btMultiBodyLinkCollider //tr.setOrigin(local_origin[0]); //tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3])); col->setWorldTransform(tr); bool isDynamic = true; short collisionFilterGroup = isDynamic? short(btBroadphaseProxy::DefaultFilter) : short(btBroadphaseProxy::StaticFilter); short collisionFilterMask = isDynamic? short(btBroadphaseProxy::AllFilter) : short(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter); world1->addCollisionObject(col,collisionFilterGroup,collisionFilterMask); btVector3 color = selectColor();//(0.0,0.0,0.5); gfxBridge.createCollisionObjectGraphicsObject(col,color); btScalar friction = 0.5f; col->setFriction(friction); if (parentIndex>=0) { mappings.m_bulletMultiBody->getLink(linkIndex-1).m_collider=col; } else { mappings.m_bulletMultiBody->setBaseCollider(col); } } } //mappings.m_linkLocalDiagonalInertiaTensors.push_back(localInertiaDiagonal); //mappings.m_linkLocalInertiaTransforms.push_back(localInertialTransform); } } } mappings.m_linkMasses.push_back(mass); for (std::vector >::const_iterator child = link->child_links.begin(); child != link->child_links.end(); child++) { if (*child) { URDFvisual2BulletCollisionShape(*child,gfxBridge, linkTransformInWorldSpace, world1,mappings,pathPrefix); } else { std::cout << "root link: " << link->name << " has a null child!" << *child << std::endl; } } } void ImportUrdfSetup::initPhysics(GraphicsPhysicsBridge& gfxBridge) { int upAxis = 2; gfxBridge.setUpAxis(2); this->createEmptyDynamicsWorld(); gfxBridge.createPhysicsDebugDrawer(m_dynamicsWorld); m_dynamicsWorld->getDebugDrawer()->setDebugMode( btIDebugDraw::DBG_DrawConstraints +btIDebugDraw::DBG_DrawContactPoints +btIDebugDraw::DBG_DrawAabb );//+btIDebugDraw::DBG_DrawConstraintLimits); btVector3 gravity(0,0,0); gravity[upAxis]=-9.8; m_dynamicsWorld->setGravity(gravity); //int argc=0; char relativeFileName[1024]; b3FileUtils fu; printf("m_fileName=%s\n", m_fileName); bool fileFound = fu.findFile(m_fileName, relativeFileName, 1024); std::string xml_string; char pathPrefix[1024]; pathPrefix[0] = 0; if (!fileFound){ std::cerr << "URDF file not found, using a dummy test URDF" << std::endl; xml_string = std::string(urdf_char); } else { int maxPathLen = 1024; fu.extractPath(relativeFileName,pathPrefix,maxPathLen); std::fstream xml_file(relativeFileName, std::fstream::in); while ( xml_file.good() ) { std::string line; std::getline( xml_file, line); xml_string += (line + "\n"); } xml_file.close(); } my_shared_ptr robot = parseURDF(xml_string); if (!robot){ std::cerr << "ERROR: Model Parsing the xml failed" << std::endl; return ; } std::cout << "robot name is: " << robot->getName() << std::endl; // get info from parser std::cout << "---------- Successfully Parsed XML ---------------" << std::endl; // get root link my_shared_ptr root_link=robot->getRoot(); if (!root_link) return ; std::cout << "root Link: " << root_link->name << " has " << root_link->child_links.size() << " child(ren)" << std::endl; // print entire tree printTree(root_link); btTransform identityTrans; identityTrans.setIdentity(); int numJoints = (*robot).m_numJoints; static bool useFeatherstone = false; { URDF2BulletMappings mappings; mappings.m_createMultiBody = useFeatherstone; mappings.m_totalNumJoints = numJoints; URDFvisual2BulletCollisionShape(root_link, gfxBridge, identityTrans,m_dynamicsWorld,mappings,pathPrefix); if (useFeatherstone) { btMultiBody* mb = mappings.m_bulletMultiBody; mb->setHasSelfCollision(false); mb->finalizeMultiDof(); m_dynamicsWorld->addMultiBody(mb); } } //the btMultiBody support is work-in-progress :-) useFeatherstone = !useFeatherstone; printf("numJoints/DOFS = %d\n", numJoints); if (0) { btVector3 halfExtents(1,1,1); btBoxShape* box = new btBoxShape(halfExtents); box->initializePolyhedralFeatures(); gfxBridge.createCollisionShapeGraphicsObject(box); btTransform start; start.setIdentity(); btVector3 origin(0,0,0); origin[upAxis]=5; start.setOrigin(origin); btRigidBody* body = createRigidBody(1,start,box); btVector3 color(0.5,0.5,0.5); gfxBridge.createRigidBodyGraphicsObject(body,color); } { btVector3 groundHalfExtents(20,20,20); groundHalfExtents[upAxis]=1.f; btBoxShape* box = new btBoxShape(groundHalfExtents); box->initializePolyhedralFeatures(); gfxBridge.createCollisionShapeGraphicsObject(box); btTransform start; start.setIdentity(); btVector3 groundOrigin(0,0,0); groundOrigin[upAxis]=-1.5; start.setOrigin(groundOrigin); btRigidBody* body = createRigidBody(0,start,box); //m_dynamicsWorld->removeRigidBody(body); // m_dynamicsWorld->addRigidBody(body,2,1); btVector3 color(0.5,0.5,0.5); gfxBridge.createRigidBodyGraphicsObject(body,color); } m_dynamicsWorld->stepSimulation(1. / 240., 0);// 1., 10, 1. / 240.); } void ImportUrdfSetup::stepSimulation(float deltaTime) { if (m_dynamicsWorld) { //the maximal coordinates/iterative MLCP solver requires a smallish timestep to converge m_dynamicsWorld->stepSimulation(deltaTime,10,1./240.); } }