#testrender.py is a bit slower than testrender_np.py: pixels are copied from C to Python one by one import matplotlib.pyplot as plt import pybullet import time plt.ion() img = [[1,2,3]*50]*100#np.random.rand(200, 320) #img = [tandard_normal((50,100)) image = plt.imshow(img,interpolation='none',animated=True,label="blah") ax = plt.gca() pybullet.connect(pybullet.DIRECT) pybullet.loadURDF("plane.urdf",[0,0,-1]) pybullet.loadURDF("r2d2.urdf") pybullet.setGravity(0,0,-10) camTargetPos = [0,0,0] cameraUp = [0,0,1] cameraPos = [1,1,1] pitch = -10.0 roll=0 upAxisIndex = 2 camDistance = 4 pixelWidth = 320 pixelHeight = 200 nearPlane = 0.01 farPlane = 100 fov = 60 main_start = time.time() while(1): for yaw in range (0,360,10) : pybullet.stepSimulation() start = time.time() viewMatrix = pybullet.computeViewMatrixFromYawPitchRoll(camTargetPos, camDistance, yaw, pitch, roll, upAxisIndex) aspect = pixelWidth / pixelHeight; projectionMatrix = pybullet.computeProjectionMatrixFOV(fov, aspect, nearPlane, farPlane); img_arr = pybullet.getCameraImage(pixelWidth, pixelHeight, viewMatrix,projectionMatrix, shadow=1,lightDirection=[1,1,1],renderer=pybullet.ER_BULLET_HARDWARE_OPENGL) stop = time.time() print ("renderImage %f" % (stop - start)) w=img_arr[0] #width of the image, in pixels h=img_arr[1] #height of the image, in pixels rgb=img_arr[2] #color data RGB dep=img_arr[3] #depth data #print(rgb) print ('width = %d height = %d' % (w,h)) #note that sending the data using imshow to matplotlib is really slow, so we use set_data #plt.imshow(rgb,interpolation='none') image.set_data(rgb) ax.plot([0]) #plt.draw() #plt.show() plt.pause(0.01) main_stop = time.time() print ("Total time %f" % (main_stop - main_start)) pybullet.resetSimulation()