/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Stephane Redon / Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "BU_Screwing.h" BU_Screwing::BU_Screwing(const SimdVector3& relLinVel,const SimdVector3& relAngVel) { const SimdScalar dx=relLinVel[0]; const SimdScalar dy=relLinVel[1]; const SimdScalar dz=relLinVel[2]; const SimdScalar wx=relAngVel[0]; const SimdScalar wy=relAngVel[1]; const SimdScalar wz=relAngVel[2]; // Compute the screwing parameters : // w : total amount of rotation // s : total amount of translation // u : vector along the screwing axis (||u||=1) // o : point on the screwing axis m_w=SimdSqrt(wx*wx+wy*wy+wz*wz); //if (!w) { if (fabs(m_w)= BUM_EPSILON2) { if (n1[0] || n1[1] || n1[2]) { // n1 is not the zero vector n1.normalize(); SimdVector3 n1orth=m_u.cross(n1); float n2x=SimdCos(0.5f*m_w); float n2y=SimdSin(0.5f*m_w); m_o=0.5f*t.dot(n1)*(n1+n2x/n2y*n1orth); } else { m_o=SimdPoint3(0.f,0.f,0.f); } } } //Then, I need to compute Pa, the matrix from the reference (global) frame to //the screwing frame : void BU_Screwing::LocalMatrix(SimdTransform &t) const { //So the whole computations do this : align the Oz axis along the // screwing axis (thanks to u), and then find two others orthogonal axes to // complete the basis. if ((m_u[0]>SCREWEPSILON)||(m_u[0]<-SCREWEPSILON)||(m_u[1]>SCREWEPSILON)||(m_u[1]<-SCREWEPSILON)) { // to avoid numerical problems float n=SimdSqrt(m_u[0]*m_u[0]+m_u[1]*m_u[1]); float invn=1.0f/n; SimdMatrix3x3 mat; mat[0][0]=-m_u[1]*invn; mat[0][1]=m_u[0]*invn; mat[0][2]=0.f; mat[1][0]=-m_u[0]*invn*m_u[2]; mat[1][1]=-m_u[1]*invn*m_u[2]; mat[1][2]=n; mat[2][0]=m_u[0]; mat[2][1]=m_u[1]; mat[2][2]=m_u[2]; t.setOrigin(SimdPoint3( m_o[0]*m_u[1]*invn-m_o[1]*m_u[0]*invn, -(m_o[0]*mat[1][0]+m_o[1]*mat[1][1]+m_o[2]*n), -(m_o[0]*m_u[0]+m_o[1]*m_u[1]+m_o[2]*m_u[2]))); t.setBasis(mat); } else { SimdMatrix3x3 m; m[0][0]=1.; m[1][0]=0.; m[2][0]=0.; m[0][1]=0.f; m[1][1]=float(SimdSign(m_u[2])); m[2][1]=0.f; m[0][2]=0.f; m[1][2]=0.f; m[2][2]=float(SimdSign(m_u[2])); t.setOrigin(SimdPoint3( -m_o[0], -SimdSign(m_u[2])*m_o[1], -SimdSign(m_u[2])*m_o[2] )); t.setBasis(m); } } //gives interpolated transform for time in [0..1] in screwing frame SimdTransform BU_Screwing::InBetweenTransform(const SimdTransform& tr,SimdScalar t) const { SimdPoint3 org = tr.getOrigin(); SimdPoint3 neworg ( org.x()*SimdCos(m_w*t)-org.y()*SimdSin(m_w*t), org.x()*SimdSin(m_w*t)+org.y()*SimdCos(m_w*t), org.z()+m_s*CalculateF(t)); SimdTransform newtr; newtr.setOrigin(neworg); SimdMatrix3x3 basis = tr.getBasis(); SimdMatrix3x3 basisorg = tr.getBasis(); SimdQuaternion rot(SimdVector3(0.,0.,1.),m_w*t); SimdQuaternion tmpOrn; tr.getBasis().getRotation(tmpOrn); rot = rot * tmpOrn; //to avoid numerical drift, normalize quaternion rot.normalize(); newtr.setBasis(SimdMatrix3x3(rot)); return newtr; } SimdScalar BU_Screwing::CalculateF(SimdScalar t) const { SimdScalar result; if (!m_w) { result = t; } else { result = ( SimdTan((m_w*t)/2.f) / SimdTan(m_w/2.f)); } return result; }